- ID:
- ivo://CDS.VizieR/J/A+A/639/A35
- Title:
- RV jitter and photometric var. correlation
- Short Name:
- J/A+A/639/A35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Characterizing the relation between stellar photometric variability and radial velocity (RV) jitter can help us to better understand the physics behind these phenomena. The current and upcoming high precision photometric surveys such as TESS, CHEOPS, and PLATO will provide the community with thousands of new exoplanet candidates. As a consequence, the presence of such a correlation is crucial in selecting the targets with the lowest RV jitter for efficient RV follow-up of exoplanetary candidates. Studies of this type are also crucial to design optimized observational strategies to mitigate RV jitter when searching for Earth-mass exoplanets. Aims. Our goal is to assess the correlation between high-precision photometric variability measurements and high-precision RV jitter over different time scales. We analyze 171 G, K, and M stars with available TESS high precision photometric time-series and HARPS precise RVs. We derived the stellar parameters for the stars in our sample and measured the RV jitter and photometric variability. We also estimated chromospheric CaII H & K activity indicator log(R'_HK_), vsini, and the stellar rotational period. Finally, we evaluate how different stellar parameters and an RV sampling subset can have an impact on the potential correlations. We find a varying correlation between the photometric variability and RV jitter as function of time intervals between the TESS photometric observation and HARPS RV. As the time intervals of the observations considered for the analysis increases, the correlation value and significance becomes smaller and weaker, to the point that it becomes negligible. We also find that for stars with a photometric variability above 6.5 ppt the correlation is significantly stronger. We show that such a result can be due to the transition between the spot-dominated and the faculae-dominated regime. We quantified the correlations and updated the relationship between chromospheric CaII H & K activity indicator log(R'_HK_) and RV jitter.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/155/79
- Title:
- RV & light curves data for 4 G-type dwarf stars
- Short Name:
- J/AJ/155/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four close-in transiting exoplanets (HATS-50b through HATS-53b), discovered using the HATSouth three-continent network of homogeneous and automated telescopes. These new exoplanets belong to the class of hot Jupiters and orbit G-type dwarf stars, with brightness in the range V=12.5-14.0 mag. While HATS-53 has many physical characteristics similar to the Sun, the other three stars appear to be metal-rich ([Fe/H]=0.2-0.3), larger, and more massive. Three of the new exoplanets, namely HATS-50b, HATS-51b, and HATS-53b, have low density (HATS-50b: 0.39+/-0.10 M_J_, 1.130+/-0.075 R_J_; HATS-51b: 0.768+/-0.045 M_J_, 1.41+/-0.19 R_J_; HATS-53b: 0.595+/-0.089 M_J_, 1.340+/-0.056 R_J_) and similar orbital periods (3.8297 days, 3.3489 days, 3.8538 days, respectively). Instead, HATS-52b is more dense (mass 2.24+/-0.15 M_J_ and radius 1.382+/-0.086 R_J_) and has a shorter orbital period (1.3667 days). It also receives an intensive radiation from its parent star and, consequently, presents a high equilibrium temperature (T_eq_=1834+/-73 K). HATS-50 shows a marginal additional transit feature consistent with an ultra-short-period hot super Neptune (upper mass limit 0.16 M_J_), which will be able to be confirmed with TESS photometry.
- ID:
- ivo://CDS.VizieR/J/AJ/156/64
- Title:
- RV measurements for 6 K giants in the SENS program
- Short Name:
- J/AJ/156/64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of long-period radial velocity (RV) variations in six intermediate-mass K-giant stars using precise RV measurements. These discoveries are part of the Search for Exoplanets around Northern Circumpolar Stars (SENS) survey being conducted at the Bohyunsan Optical Astronomy Observatory. The nature of the RV variations was investigated by looking for photometric and line shape variations. We can find no variability with the RV period in these quantities and conclude that RV variations are most likely due to unseen sub-stellar companions. Orbital solutions for the six stars yield orbital periods in the range 418-1065 days and minimum masses in the range 1.9-8.5 M_J_. These properties are typical on planets around intermediate-mass stars. Our SENS survey so far has about an 8% confirmed planet occurrence rate, and it will provide better statistics on planets around giant stars when the survey is completed.
- ID:
- ivo://CDS.VizieR/J/AJ/157/55
- Title:
- RVs and light curves for HATS-60-HATS-69
- Short Name:
- J/AJ/157/55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of 10 transiting extrasolar planets by the HATSouth survey. The planets range in mass from the super-Neptune HATS-62b, with M_p_<0.179 M_J_, to the super-Jupiter HATS-66b, with M_p_=5.33 M_J_, and in size from the Saturn HATS-69b, with R_p_=0.94 R_J_, to the inflated Jupiter HATS-67b, with R_p_=1.69 R_J_. The planets have orbital periods between 1.6092 days (HATS-67b) and 7.8180 days (HATS-61b). The hosts are dwarf stars with masses ranging from 0.89 M_{sun}_ (HATS-69) to 1.56 M_{sun}_ (HATS-64) and have apparent magnitudes between V=12.276+/-0.020 mag (HATS-68) and V=14.095+/-0.030 mag (HATS-66). The super-Neptune HATS-62b is the least massive planet discovered to date with a radius larger than Jupiter. Based largely on the Gaia DR2 distances and broadband photometry, we identify three systems (HATS-62, HATS-64, and HATS-65) as having possible unresolved binary star companions. We discuss in detail our methods for incorporating the Gaia DR2 observations into our modeling of the system parameters and into our blend analysis procedures.
- ID:
- ivo://CDS.VizieR/J/AJ/160/222
- Title:
- RVs and RI-photometry of HATS-37 and HATS-38
- Short Name:
- J/AJ/160/222
- Date:
- 09 Mar 2022 22:00:00
- Publisher:
- CDS
- Description:
- We report the discovery of two transiting Neptunes by the HATSouth survey. The planet HATS-37Ab has a mass of 0.099{+/-}0.042M_Jup_ (31.5{+/-}13.4M{Earth}) and a radius of 0.606{+/-}0.016R_Jup_, and is on a P=4.3315day orbit around a V=12.266{+/-}0.030mag, 0.843_-0.012_^+0.017^M{odot} star with a radius of 0.877_-0.012_^+0.019^R{odot}. We also present evidence that the star HATS-37A has an unresolved stellar companion HATS-37B, with a photometrically estimated mass of 0.654{+/-}0.033M{odot}. The planet HATS-38b has a mass of 0.074{+/-}0.011M_Jup_ (23.5{+/-}3.5M{Earth}) and a radius of 0.614{+/-}0.017R_Jup_, and is on a P=4.3750day orbit around a V=12.411{+/-}0.030mag, 0.890_-0.012_^+0.016^M{odot} star with a radius of 1.105{+/-}0.016 R{odot}. Both systems appear to be old, with isochrone-based ages of 11.46_-1.45_^+0.79^Gyr, and 11.89{+/-}0.60Gyr, respectively. Both HATS-37Ab and HATS-38b lie in the Neptune desert and are thus examples of a population with a low occurrence rate. They are also among the lowest-mass planets found from ground-based wide-field surveys to date.
- ID:
- ivo://CDS.VizieR/J/ApJ/869/66
- Title:
- Search for extraterrestrial intelligence with ATA
- Short Name:
- J/ApJ/869/66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report a novel radio autocorrelation search for extraterrestrial intelligence. For selected frequencies across the terrestrial microwave window (1-10GHz), observations were conducted at the Allen Telescope Array to identify artificial non-sinusoidal periodic signals with radio bandwidths greater than 4Hz, which are capable of carrying substantial messages with symbol rates from 4 to 10^6^Hz. Out of 243 observations, about half (101) were directed toward sources with known continuum flux >~1Jy over the sampled bandwidth (quasars, pulsars, supernova remnants, and masers), based on the hypothesis that they might harbor heretofore undiscovered natural or artificial repetitive, phase or frequency modulation. The rest of the observations were directed mostly toward exoplanet stars with no previously discovered continuum flux. No signals attributable to extraterrestrial technology were found in this study. We conclude that the maximum probability that future observations like the ones described here will reveal repetitively modulated emissions is less than 5% for continuum sources and exoplanets alike. The paper concludes by describing a new approach to expanding this survey to many more targets and much greater sensitivity using archived data from interferometers all over the world.
- ID:
- ivo://CDS.VizieR/J/AJ/155/206
- Title:
- Search for rings around Kepler planet candidates
- Short Name:
- J/AJ/155/206
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We perform a systematic search for rings around 168 Kepler planet candidates with sufficient signal-to-noise ratios that are selected from all of the short-cadence data. We fit ringed and ringless models to their light curves and compare the fitting results to search for the signatures of planetary rings. First, we identify 29 tentative systems, for which the ringed models exhibit statistically significant improvement over the ringless models. The light curves of those systems are individually examined, but we are not able to identify any candidate that indicates evidence for rings. In turn, we find several mechanisms of false positives that would produce ringlike signals, and the null detection enables us to place upper limits on the size of the rings. Furthermore, assuming the tidal alignment between axes of the planetary rings and orbits, we conclude that the occurrence rate of rings larger than twice the planetary radius is less than 15%. Even though the majority of our targets are short-period planets, our null detection provides statistical and quantitative constraints on largely uncertain theoretical models of the origin, formation, and evolution of planetary rings.
- ID:
- ivo://CDS.VizieR/J/AJ/159/124
- Title:
- Searching Kepler data. I. 17 new planets
- Short Name:
- J/AJ/159/124
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of an independent search of all ~200000 stars observed over the four year Kepler mission (Q1-Q17) for multiplanet systems, using a three-transit minimum detection criterion to search orbital periods up to hundreds of days. We incorporate both automated and manual triage, and provide estimates of the completeness and reliability of our vetting pipeline. Our search returned 17 planet candidates (PCs) in addition to thousands of known Kepler Objects of Interest (KOIs), with a 98.8% recovery rate of already confirmed planets. We highlight the discovery of one candidate, KIC-7340288b, that is both rocky (radius=<1.6R_{Earth}_) and in the Habitable Zone (insolation between 0.25 and 2.2 times the Earth's insolation). Another candidate is an addition to the already known KOI-4509 system. We also present adaptive optics imaging follow-up for six of our new PCs, two of which reveal a line-of-sight stellar companion within 4".
159. SHINE II
- ID:
- ivo://CDS.VizieR/J/A+A/651/A71
- Title:
- SHINE II
- Short Name:
- J/A+A/651/A71
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- In recent decades, direct imaging has confirmed the existence of substellar companions (exoplanets or brown dwarfs) on wide orbits (>10 au) around their host stars. In striving to understand their formation and evolution mechanisms, in 2015 we initiated the SPHERE infrared survey for exoplanets (SHINE), a systematic direct imaging survey of young, nearby stars that is targeted at exploring their demographics. We aim to detect and characterize the population of giant planets and brown dwarfs beyond the snow line around young, nearby stars. Combined with the survey completeness, our observations offer the opportunity to constrain the statistical properties (occurrence, mass and orbital distributions, dependency on the stellar mass) of these young giant planets. In this study, we present the observing and data analysis strategy, the ranking process of the detected candidates, and the survey performances for a subsample of 150 stars that are representative of the full SHINE sample. Observations were conducted in a homogeneous way between February 2015 and February 2017 with the dedicated ground-based VLT/SPHERE instrument equipped with the IFS integral field spectrograph and the IRDIS dual-band imager, covering a spectral range between 0.9 and 2.3m. We used coronographic, angular, and spectral differential imaging techniques to achieve the best detection performances for this study, down to the planetary mass regime. We processed, in a uniform manner, more than 300 SHINE observations and datasets to assess the survey typical sensitivity as a function of the host star and of the observing conditions. The median detection performance reached 5-contrasts of 13mag at 200mas and 14.2mag at 800mas with the IFS (YJ and YJH bands), and of 11.8mag at 200mas, 13.1mag at 800mas, and 15.8mag at 3as with IRDIS in H band, delivering one of the deepest sensitivity surveys thus far for young, nearby stars. A total of sixteen substellar companions were imaged in this first part of SHINE: seven brown dwarf companions and ten planetary-mass companions. These include two new discoveries, HIP 65426 b and HIP 64892 B, but not the planets around PDS70 that had not been originally selected for the SHINE core sample. A total of 1483 candidates were detected, mainly in the large field of view that characterizes IRDIS. The color-magnitude diagrams, low-resolution spectrum (when available with IFS), and follow-up observations enabled us to identify the nature (background contaminant or comoving companion) of about 86% of our subsample. The remaining cases are often connected to crowded-field follow-up observations that were missing. Finally, even though SHINE was not initially designed for disk searches, we imaged twelve circumstellar disks, including three new detections around the HIP 73145, HIP 86598, and HD106906 systems. Nowadays, direct imaging provides a unique opportunity to probe the outer part of exoplanetary systems beyond 10au to explore planetary architectures, as highlighted by the discoveries of: one new exoplanet, one new brown dwarf companion, and three new debris disks during this early phase of SHINE. It also offers the opportunity to explore and revisit the physical and orbital properties of these young, giant planets and brown dwarf companions (relative position, photometry, and low-resolution spectrum in near-infrared, predicted masses, and contrast in order to search for additional companions). Finally, these results highlight the importance of finalizing the SHINE systematic observation of about 500 young, nearby stars for a full exploration of their outer part to explore the demographics of young giant planets beyond 10au and to identify the most interesting systems for the next generation of high-contrast imagers on very large and extremely large telescopes.
- ID:
- ivo://CDS.VizieR/J/MNRAS/486/5867
- Title:
- Simulated Transit depths of 12 Hot Jupiters
- Short Name:
- J/MNRAS/486/5867
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a study of synergies between space telescopes (HST, CHEOPS, TESS, JWST, PLATO) in the photometric characterization of the atmospheres of Hot Jupiters. We analyze a set of planetary systems hosting a Hot Jupiter for which an atmospheric template is available in literature. For each system, we simulate the transit light curves observed by different instruments, convolving the incoming spectrum with the corresponding instrumental throughput. For each instrument, we thus measure the expected transit depth and estimate the associated uncertainty. Finally, we compare the transit depths as seen by the selected instruments and we quantify the effect of the planetary atmosphere on multi-band transit photometry.