- ID:
- ivo://CDS.VizieR/J/AJ/156/292
- Title:
- Effect of close companions on exoplanetary radii
- Short Name:
- J/AJ/156/292
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Understanding the distribution and occurrence rate of small planets was a fundamental goal of the Kepler transiting exoplanet mission, and could be improved with K2 and Transiting Exoplanet Survey Satellite (TESS). Deriving accurate exoplanetary radii requires accurate measurements of the host star radii and the planetary transit depths, including accounting for any "third light" in the system due to nearby bound companions or background stars. High-resolution imaging of Kepler and K2 planet candidate hosts to detect very close (within ~0.5") background or bound stellar companions has been crucial for both confirming the planetary nature of candidates, and the determination of accurate planetary radii and mean densities. Here we present an investigation of the effect of close companions, both detected and undetected, on the observed (raw count) exoplanet radius distribution. We demonstrate that the recently detected "gap" in the observed radius distribution (also seen in the completeness-corrected distribution) is fairly robust to undetected stellar companions, given that all of the systems in the sample have undergone some kind of vetting with high-resolution imaging. However, while the gap in the observed sample is not erased or shifted, it is partially filled in after accounting for possible undetected stellar companions. These findings have implications for the most likely core composition, and thus formation location, of super-Earth and sub-Neptune planets. Furthermore, we show that without high-resolution imaging of planet candidate host stars, the shape of the observed exoplanet radius distribution will be incorrectly inferred, for both Kepler- and TESS-detected systems.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/156/83
- Title:
- Effect of stellar companions on planetary systems
- Short Name:
- J/AJ/156/83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Kepler light curves used to detect thousands of planetary candidates are susceptible to dilution due to blending with previously unknown nearby stars. With the automated laser adaptive optics instrument, Robo-AO, we have observed 620 nearby stars around 3857 planetary candidates host stars. Many of the nearby stars, however, are not bound to the KOI. We use galactic stellar models and the observed stellar density to estimate the number and properties of unbound stars. We estimate the spectral type and distance to 145 KOIs with nearby stars using multi-band observations from Robo-AO and Keck-AO. Most stars within 1" of a Kepler planetary candidate are likely bound, in agreement with past studies. We use likely bound stars and the precise stellar parameters from the California Kepler Survey to search for correlations between stellar binarity and planetary properties. No significant difference between the binarity fraction of single and multiple-planet systems is found, and planet hosting stars follow similar binarity trends as field stars, many of which likely host their own non-aligned planets. We find that hot Jupiters are ~4x more likely than other planets to reside in a binary star system. We correct the radius estimates of the planet candidates in characterized systems and find that for likely bound systems, the estimated planetary radii will increase on average by a factor of 1.77, if either star is equally likely to host the planet. Lastly, we find the planetary radius gap is robust to the impact of dilution.
- ID:
- ivo://CDS.VizieR/J/AJ/155/68
- Title:
- Elemental abundances of KOIs in APOGEE. I.
- Short Name:
- J/AJ/155/68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed ~600 transiting exoplanets and exoplanet candidates from Kepler (Kepler Objects of Interest, KOIs), most with >=18 epochs. The combined multi-epoch spectra are of high signal-to-noise ratio (typically >=100) and yield precise stellar parameters and chemical abundances. We first confirm the ability of the APOGEE abundance pipeline, ASPCAP, to derive reliable [Fe/H] and effective temperatures for FGK dwarf stars - the primary Kepler host stellar type - by comparing the ASPCAP-derived stellar parameters with those from independent high-resolution spectroscopic characterizations for 221 dwarf stars in the literature. With a sample of 282 close-in (P<100 days) KOIs observed in the APOGEE KOI goal program, we find a correlation between orbital period and host star [Fe/H] characterized by a critical period, P_crit_=8.3_-4.1_^+0.1^ days, below which small exoplanets orbit statistically more metal-enriched host stars. This effect may trace a metallicity dependence of the protoplanetary disk inner radius at the time of planet formation or may be a result of rocky planet ingestion driven by inward planetary migration. We also consider that this may trace a metallicity dependence of the dust sublimation radius, but we find no statistically significant correlation with host T_eff_ and orbital period to support such a claim.
- ID:
- ivo://CDS.VizieR/J/A+A/629/A80
- Title:
- ESPRESSO blind RV exoplanet survey catalog
- Short Name:
- J/A+A/629/A80
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One of the main scientific drivers for ESPRESSO, Echelle SPectrograph, is the detection and characterization of Earth-class exoplanets. With this goal in mind, the ESPRESSO guaranteed time observations (GTO) Catalog identifies the best target stars for a blind search for the radial velocity (RV) signals caused by Earth-class exoplanets. Using the most complete stellar catalogs available, we screened for the most suitable G, K, and M dwarf stars for the detection of Earth-class exoplanets with ESPRESSO. For most of the stars, we then gathered high-resolution spectra from new observations or from archival data. We used these spectra to spectroscopically investigate the existence of any stellar binaries, both bound or background stars. We derived the activity level using chromospheric activity indexes using log (R'_HK_), as well as the projected rotational velocity vsini. For the cases where planet companions are already known, we also looked at the possibility that additional planets may exist in the host's habitable zone using dynamical arguments. We estimated the spectroscopic contamination level, vsini, activity, stellar parameters and chemical abundances for 249 of the most promising targets. Using these data, we selected 45 stars that match our criteria for detectability of a planet like Earth. The stars presented and discussed in this paper constitute the ESPRESSO GTO catalog for the RV blind search for Earth-class planets. They can also be used for any other work requiring a detailed spectroscopic characterization of stars in the solar neighborhood.
- ID:
- ivo://CDS.VizieR/J/ApJS/254/39
- Title:
- Exoplanet candidates from TESS first 2yr obs
- Short Name:
- J/ApJS/254/39
- Date:
- 03 Dec 2021 00:47:43
- Publisher:
- CDS
- Description:
- We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes.
- ID:
- ivo://CDS.VizieR/J/AJ/159/154
- Title:
- Exoplanet candidates in Campaign 5 of the K2 mission
- Short Name:
- J/AJ/159/154
- Date:
- 08 Dec 2021
- Publisher:
- CDS
- Description:
- We present a uniform transiting exoplanet candidate list for Campaign 5 of the K2 mission. This catalog contains 75 planets with seven multi-planet systems (five double, one triple, and one quadruple planet system). Within the range of our search, we find eight previously undetected candidates, with the remaining 67 candidates overlapping 51% of the study of Kruse+, (2019, J/ApJS/244/11) that manually vets candidates from Campaign 5. In order to vet our potential transit signals, we introduce the Exoplanet Detection Identification Vetter (EDI-Vetter), which is a fully automated program able to determine whether a transit signal should be labeled as a false positive or a planet candidate. This automation allows us to create a statistically uniform catalog, ideal for measurements of planet occurrence rate. When tested, the vetting software is able to ensure that our sample is 94.2% reliable against systematic false positives. Additionally, we inject artificial transits at the light-curve level of the raw K2 data and find that the maximum completeness of our pipeline is 70% before vetting and 60% after vetting. For convenience of future studies of occurrence rate, we include measurements of stellar noise (CDPP; combined differential photometric precision --Christiansen+ 2012, J/PASP/124/1279) and the three-transit window function for each target.
- ID:
- ivo://CDS.VizieR/J/MNRAS/463/1780
- Title:
- Exoplanet candidates in Praesepe (M 44)
- Short Name:
- J/MNRAS/463/1780
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a PSF-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.
- ID:
- ivo://CDS.VizieR/J/A+A/649/A156
- Title:
- Exoplanet host stars SPHERE multiplicity survey
- Short Name:
- J/A+A/649/A156
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We are studying the influence of stellar multiplicity on exoplanet systems and, in particular, systems that have been detected via radial-velocity searches. We are specifically interested in the closest companions as they would have a strong influence on the evolution of the original planet-forming disks. In this study, we present new companions that have been detected during our ongoing survey of exoplanet hosts with VLT/SPHERE (Spectro-Polarimetric High-Contrast Exoplanet Research). We are using the extreme adaptive optics imager SPHERE at the ESO/VLT to search for faint (sub)stellar companions. We utilized the classical coronagraphic imaging mode to perform a snapshot survey (3-6min integration time) of exoplanet host stars in the K_S_-band. We detected new stellar companions to the exoplanet host stars HD 1666, HIP 68468, HIP 107773, and HD 109271. With an angular separation of only 0.38arcsec (40au of projected separation), HIP 107773 is among the closest companions found for exoplanet host stars. The presence of the stellar companion explains the linear radial-velocity trend seen in the system. At such a small separation, the companion likely had a significant influence on the evolution of the planet-forming disk around the primary star. We find that the companion in the HD 1666 system may well be responsible for the high orbit eccentricity (0.63) of the detected Jupiter class planet, making this system one of only a few where such a connection can be established. A cross-match with the Gaia DR2 catalog shows, furthermore, that the near infrared faint companion around HD 109271 was detected in the optical and it is significantly brighter than in the near infrared, making it a white dwarf companion.
- ID:
- ivo://CDS.VizieR/J/AJ/159/211
- Title:
- Exoplanet parameters from Kepler and K2
- Short Name:
- J/AJ/159/211
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present calculations of the occurrence rate of small close-in planets around low-mass dwarf stars using the known planet populations from the Kepler and K2 missions. Applying completeness corrections clearly reveals the radius valley in the maximum a posteriori occurrence rates as a function of orbital separation and planet radius. We measure the slope of the valley to be r_p,valley_{prop}F^-0.060{+/-}0.025^, which bears the opposite sign from that measured around Sun-like stars, thus suggesting that thermally driven atmospheric mass loss may not dominate the evolution of planets in the low stellar mass regime or that we are witnessing the emergence of a separate channel of planet formation. The latter notion is supported by the relative occurrence of rocky to non-rocky planets increasing from 0.5{+/-}0.1 around mid-K dwarfs to 8.5{+/-}4.6 around mid-M dwarfs. Furthermore, the center of the radius valley at 1.54{+/-}0.16R{earth} is shown to shift to smaller sizes with decreasing stellar mass, in agreement with physical models of photoevaporation, core-powered mass loss, and gas-poor formation. Although current measurements are insufficient to robustly identify the dominant formation pathway of the radius valley, such inferences may be obtained by the Transiting Exoplanet Survey Satellite with O(85000) mid-to-late M dwarfs observed with 2minutes cadence. The measurements presented herein also precisely designate the subset of planetary orbital periods and radii that should be targeted in radial velocity surveys to resolve the rocky to non-rocky transition around low-mass stars.
- ID:
- ivo://CDS.VizieR/J/ApJS/240/17
- Title:
- Exoplanets in the Antarctic sky. II. 116 candidates
- Short Name:
- J/ApJS/240/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report first results from the CHinese Exoplanet Searching Program from Antarctica (CHESPA)--a wide-field high-resolution photometric survey for transiting exoplanets carried out using telescopes of the AST3 (Antarctic Survey Telescopes times 3) project. There are now three telescopes (AST3-I, AST3-II, and CSTAR-II) operating at Dome A --the highest point on the Antarctic Plateau-- in a fully automatic and remote mode to exploit the superb observing conditions of the site, and its long and uninterrupted polar nights. The search for transiting exoplanets is one of the key projects for AST3. During the austral winters of 2016 and 2017 we used the AST3-II telescope to survey a set of target fields near the southern ecliptic pole, falling within the continuous viewing zone of the TESS mission. The first data release of the 2016 data, including images, catalogs, and light curves of 26578 bright stars (7.5<=m_i_<=15), was presented in Zhang+ (2018, J/ApJS/240/16). The best precision, as measured by the rms of the light curves at the optimum magnitude of the survey (m_i_=10), is around 2mmag. We detect 222 objects with plausible transit signals from these data, 116 of which are plausible transiting exoplanet candidates according to their stellar properties as given by the TESS Input Catalog, Gaia DR2, and TESS-HERMES spectroscopy. With the first data release from TESS expected in late 2018, this candidate list will be timely for improving the rejection of potential false-positives.