- ID:
- ivo://CDS.VizieR/J/A+A/623/A140
- Title:
- HD169142 SPHERE images
- Short Name:
- J/A+A/623/A140
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Young planets are expected to cause cavities, spirals, and kinematic perturbations in protostellar disks that may be used to infer their presence. However, a clear detection of still-forming planets embedded within gas-rich disks is still rare. HD169142 is a very young Herbig Ae-Be star surrounded by a pre-transitional disk, composed of at least three rings. While claims of sub-stellar objects around this star have been made previously, follow-up studies remain inconclusive. The complex structure of this disk is not yet well understood. We used the high contrast imager SPHERE at ESO Very large Telescope to obtain a sequence of high-resolution, high-contrast images of the immediate surroundings of this star over about three years in the wavelength range 0.95-2.25um. This enables a photometric and astrometric analysis of the structures in the disk. While we were unable to definitively confirm the previous claims of a massive sub-stellar object at 0.1-0.15arcsec from the star, we found both spirals and blobs within the disk. The spiral pattern may be explained as due to the presence of a primary, a secondary, and a tertiary arm excited by a planet of a few Jupiter masses lying along the primary arm, likely in the cavities between the rings. The blobs orbit the star consistently with Keplerian motion, allowing a dynamical determination of the mass of the star. While most of these blobs are located within the rings, we found that one of them lies in the cavity between the rings, along the primary arm of the spiral design. This blob might be due to a planet that might also be responsible for the spiral pattern observed within the rings and for the cavity between the two rings. The planet itself is not detected at short wavelengths, where we only see a dust cloud illuminated by stellar light, but the planetary photosphere might be responsible for the emission observed in the K1 and K2 bands. The mass of this putative planet may be constrained using photometric and dynamical arguments. While uncertainties are large, the mass should be between 1 and 4 Jupiter masses. The brightest blobs are found at the 1:2 resonance with this putative planet.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/154/210
- Title:
- 2015 high-cadence Spitzer microlensing events
- Short Name:
- J/AJ/154/210
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze an ensemble of microlensing events from the 2015 Spitzer microlensing campaign, all of which were densely monitored by ground-based high-cadence survey teams. The simultaneous observations from Spitzer and the ground yield measurements of the microlensing parallax vector {pi}_E_, from which compact constraints on the microlens properties are derived, including ~<25% uncertainties on the lens mass and distance. With the current sample, we demonstrate that the majority of microlenses are indeed in the mass range of M dwarfs. The planet sensitivities of all 41 events in the sample are calculated, from which we provide constraints on the planet distribution function. In particular, assuming a planet distribution function that is uniform in log q, where q is the planet-to-star mass ratio, we find a 95% upper limit on the fraction of stars that host typical microlensing planets of 49%, which is consistent with previous studies. Based on this planet-free sample, we develop the methodology to statistically study the Galactic distribution of planets using microlensing parallax measurements. Under the assumption that the planet distributions are the same in the bulge as in the disk, we predict that ~1/3 of all planet detections from the microlensing campaigns with Spitzer should be in the bulge. This prediction will be tested with a much larger sample, and deviations from it can be used to constrain the abundance of planets in the bulge relative to the disk.
- ID:
- ivo://CDS.VizieR/J/AJ/159/197
- Title:
- HIRES radial velocities of HD9446, HD43691 & HD179079
- Short Name:
- J/AJ/159/197
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transit Ephemeris Refinement and Monitoring Survey is a project that aims to detect transits of intermediate-long period planets by refining orbital parameters of the known radial velocity planets using additional data from ground-based telescopes, calculating a revised transit ephemeris for the planet, then monitoring the planet host star during the predicted transit window. Here we present the results from three systems that had high probabilities of transiting planets: HD9446b and c, HD43691b, and HD179079b. We provide new radial velocity (RV) measurements that are then used to improve the orbital solution for the known planets. We search the RV data for indications of additional planets in orbit and find that HD9446 shows a strong linear trend of 4.8{sigma}. Using the newly refined planet orbital solutions, which include a new best-fit solution for the orbital period of HD9446c, and an improved transit ephemerides, we found no evidence of transiting planets in the photometry for each system. Transits of HD9446b can be ruled out completely and transits HD9446c and HD43691b can be ruled out for impact parameters up to b=0.5778 and b=0.898, respectively, due to gaps in the photometry. A transit of HD179079b cannot be ruled out, however, due to the relatively small size of this planet compared to the large star and thus low signal to noise. We determine properties of the three host stars through spectroscopic analysis and find through photometric analysis that HD9446 exhibits periodic variability.
- ID:
- ivo://CDS.VizieR/J/A+A/610/A20
- Title:
- HITEP. II. Transiting exoplanets imaging
- Short Name:
- J/A+A/610/A20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the second part of a high resolution imaging survey of hot Jupiter host stars. We search for binary companions to known transiting exoplanet host stars, in order to determine the multiplicity properties of hot Jupiter host stars. We also search for and characterise unassociated stars along the line of sight, allowing photometric and spectroscopic observations of the planetary system to be corrected for contaminating light.
- ID:
- ivo://CDS.VizieR/J/A+A/622/A81
- Title:
- 15 hot Jupiter exoplanets light curves
- Short Name:
- J/A+A/622/A81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transit events of extrasolar planets offer a wealth of information for planetary characterization. However, for many known targets, the uncertainty of their predicted transit windows prohibits an accurate scheduling of follow-up observations. In this work, we refine the ephemerides of 21 hot Jupiter exoplanets with the largest timing uncertainties. We collected 120 professional and amateur transit light curves of the targets of interest, observed with a range of telescopes of 0.3m-2.2m, and analyzed them along with the timing information of the planets discovery papers. In the case of WASP-117b, we measured a timing deviation compared to the known ephemeris of about 3.5h, and for HAT-P-29b and HAT-P-31b the deviation amounted to about 2h and more. For all targets, the new ephemeris predicts transit timings with uncertainties of less than 6-min in the year 2018 and less than 13-min until 2025. Thus, our results allow for an accurate scheduling of follow-up observations in the next decade.
- ID:
- ivo://CDS.VizieR/J/MNRAS/474/2094
- Title:
- Inferring probabilistic stellar rotation periods
- Short Name:
- J/MNRAS/474/2094
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online (https://github.com/RuthAngus/GProtation/).
- ID:
- ivo://CDS.VizieR/J/AJ/160/253
- Title:
- Infrared photometry of late-type dwarfs in Kepler Field
- Short Name:
- J/AJ/160/253
- Date:
- 08 Dec 2021
- Publisher:
- CDS
- Description:
- While it is well-established that giant-planet occurrence rises rapidly with host star metallicity, it is not yet clear if small-planet occurrence around late-type dwarf stars depends on host star metallicity. Using the Kepler Data Release 25 planet candidate list and its completeness data products, we explore planet occurrence as a function of metallicity in the Kepler field's late-type dwarf stellar population. We find that planet occurrence increases with metallicity for all planet radii Rp down to at least Rp~2R{Earth}, and that in the range 2R{Earth}<~Rp<~5R{Earth}, planet occurrence scales linearly with metallicity Z. Extrapolating our results, we predict that short-period planets with Rp<~2R{Earth} should be rare around early-M dwarf stars with [M/H]<~-0.5 or late-M dwarf stars with [M/H]<~+0.0. This dependence of planet occurrence on metallicity observed in the Kepler field emphasizes the need to control for metallicity in estimates of planet occurrence for late-type dwarf stars like those targeted by Kepler's K2 extension and the Transiting Exoplanet Survey Satellite. We confirm the theoretical expectation that the small-planet occurrence-host star metallicity relation is stronger for low-mass stars than for solar-type stars. We establish that the expected solid mass in planets around late-type dwarfs in the Kepler field is comparable to the total amount of planet-making solids in their protoplanetary disks. We argue that this high efficiency of planet formation favors planetesimal accretion over pebble accretion as the origin of the small planets observed by Kepler around late-type dwarf stars.
- ID:
- ivo://CDS.VizieR/J/AJ/160/201
- Title:
- Infrared transmission spectrum for Kepler-79d
- Short Name:
- J/AJ/160/201
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Extremely low-density planets ("super-puffs") are a small but intriguing subset of the transiting planet population. With masses in the super-Earth range (1-10M{Earth}) and radii akin to those of giant planets (>4R{Earth}), their large envelopes may have been accreted beyond the water snow line and many appear to be susceptible to catastrophic mass loss. Both the presence of water and the importance of mass loss can be explored using transmission spectroscopy. Here, we present new Hubble space telescope WFC3 spectroscopy and updated Kepler transit depth measurements for the super-puff Kepler-79d. We do not detect any molecular absorption features in the 1.1-1.7{mu}m WFC3 bandpass, and the combined Kepler and WFC3 data are consistent with a flat-line model, indicating the presence of aerosols in the atmosphere. We compare the shape of Kepler-79d transmission spectrum to predictions from a microphysical haze model that incorporates an outward particle flux due to ongoing mass loss. We find that photochemical hazes offer an attractive explanation for the observed properties of super-puffs like Kepler-79d, as they simultaneously render the near-infrared spectrum featureless and reduce the inferred envelope mass-loss rate by moving the measured radius (optical depth unity surface during transit) to lower pressures. We revisit the broader question of mass-loss rates for super-puffs and find that the age estimates and mass-loss rates for the majority of super-puffs can be reconciled if hazes move the photosphere from the typically assumed pressure of ~10mbar to ~10{mu}bar.
- ID:
- ivo://CDS.VizieR/J/AJ/159/18
- Title:
- Jovian-type planets around M dwarfs with MIRI/JWST
- Short Name:
- J/AJ/159/18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The upcoming launch of the James Webb Space Telescope (JWST) will dramatically increase our understanding of exoplanets, particularly through direct imaging. Microlensing and radial velocity surveys indicate that some M dwarfs host long-period giant planets. Some of these planets will likely be just a few parsecs away and a few astronomical units from their host stars, a parameter space that cannot be probed by existing high-contrast imagers. We studied whether the coronagraphs on the Mid-infrared Instrument on JWST can detect Jovian-type planets around nearby M dwarfs. For a sample of 27 very nearby M dwarfs, we simulated a sample of Saturn-Jupiter-mass planets with three atmospheric configurations and three orbital separations, observed in three different filters. We found that the f1550c 15.5 {mu}m filter is best suited for detecting Jupiter-like planets. Jupiter-like planets with patchy cloud cover, 2 au from their star, are detectable at 15.5 {mu}m around 14 stars in our sample, while Jupiters with clearer atmospheres are detectable around all stars in the sample. Saturns were most detectable at 10.65 and 11.4 {mu}m (f1065c and f1140c filters), but only with cloud-free atmospheres and within 3 pc (six stars). Surveying all 27 stars would take <170 hr of JWST integration time, or just a few hours for a shorter survey of the most favorable targets. There is one potentially detectable known planet in our sample: GJ 832 b. Observations aimed at detecting this planet should occur in 2024-2026, when the planet is maximally separated from the star.
- ID:
- ivo://CDS.VizieR/J/A+A/633/A110
- Title:
- K band spectrum of beta Pictoris b
- Short Name:
- J/A+A/633/A110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Beta Pictoris is arguably one of the most studied stellar systems outside of our own. Some 30 years of observations have revealed a highly-structured circumstellar disk, with rings, belts, and a giant planet: beta Pictoris b. However very little is known about how this system came into being. Our objective is to estimate the C/O ratio in the atmosphere of {beta} Pictoris b and obtain an estimate of the dynamical mass of the planet, as well as to refine its orbital parameters using high-precision astrometry. We used the GRAVITY instrument with the four 8.2m telescopes of the Very Large Telescope Interferometer to obtain K-band spectro-interferometric data on {beta} Pic b. We extracted a medium resolution (R=500) K-band spectrum of the planet and a high- precision astrometric position. We estimated the planetary C/O ratio using two different approaches (forward modeling and free retrieval) from two different codes (ExoREM and petitRADTRANS, respectively). Finally, we used a simplified model of two formation scenarios (gravitational collapse and core-accretion) to determine which can best explain the measured C/O ratio. Our new astrometry disfavors a circular orbit for beta Pic b (e=0.15^+0.05^_-0.04_). Combined with previous results and with Hipparcos/GAIA measurements, this astrometry points to a planet mass of M=12.7+/-2.2M_{Jup}_. This value is compatible with the mass derived with the free-retrieval code petitRADTRANS using spectral data only. The forward modeling and free-retrieval approches yield very similar results regarding the atmosphere of beta Pic b. In particular, the C/O ratios derived with the two codes are identical (0.43+/-0.05 vs $0.43^+0.04^_-0.03_). We argue that if the stellar C/O in beta Pic is Solar, then this combination of a very high mass and a low C/O ratio for the planet suggests a formation through core-accretion, with strong planetesimal enrichment.