- ID:
- ivo://CDS.VizieR/J/ApJS/243/15
- Title:
- WERGS. II. SED fitting with optical, IR & radio data
- Short Name:
- J/ApJS/243/15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present physical properties of radio galaxies (RGs) with f_1.4GHz_>1mJy discovered by Subaru Hyper Suprime-Cam (HSC) and Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. For 1056 FIRST RGs at 0<z<=1.7 with HSC counterparts in about 100deg^2^, we compiled multi-wavelength data of optical, near-infrared (IR), mid-IR, far-IR, and radio (150MHz). We derived their color excess (E(B-V)_*_), stellar mass, star formation rate (SFR), IR luminosity, the ratio of IR and radio luminosity (q_IR_), and radio spectral index ({alpha}_radio_) that are derived from the spectral energy distribution (SED) fitting with CIGALE. We also estimated Eddington ratio based on stellar mass and integration of the best-fit SEDs of active galactic nucleus (AGN) component. We found that E(B-V)_*_, SFR, and IR luminosity clearly depend on redshift while stellar mass, q_IR_, and {alpha}_radio_ do not significantly depend on redshift. Since optically faint (i_AB_>=21.3) RGs that are newly discovered by our RG survey tend to be high redshift, they tend to not only have a large dust extinction and low stellar mass but also have high SFR and AGN luminosity, high IR luminosity, and high Eddington ratio compared with optically bright ones. The physical properties of a fraction of RGs in our sample seem to differ from a classical view of RGs with massive stellar mass, low SFR, and low Eddington ratio, demonstrating that our RG survey with HSC and FIRST provides us curious RGs among entire RG population.
« Previous |
231 - 236 of 236
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/162/153
- Title:
- X-ray properties of A,B-types, T-Tauri stars & YSOs
- Short Name:
- J/AJ/162/153
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- We use X-ray and infrared observations to study the properties of three classes of young stars in the Carina Nebula: intermediate-mass (2-5M{sun}) pre-main-sequence stars (IMPS; i.e., intermediate-mass T Tauri stars), late-B and A stars on the zero-age main sequence (AB), and lower-mass T Tauri stars (TTS). We divide our sources among these three subclassifications and further identify disk-bearing young stellar objects versus diskless sources with no detectable infrared (IR) excess emission using IR (1-8{mu}m) spectral energy distribution modeling. We then perform X-ray spectral fitting to determine the hydrogen-absorbing column density (N_H_), absorption-corrected X-ray luminosity (L_X_), and coronal plasma temperature (kT) for each source. We find that the X-ray spectra of both IMPS and TTS are characterized by similar kT and N_H_, and on average L_X_/L_bol_~4x10^-4^. IMPS are systematically more luminous in X-rays (by ~0.3dex) than all other subclassifications, with median L_X_=2.5x10^31^erg/s, while AB stars of similar masses have X-ray emission consistent with TTS companions. These lines of evidence converge on a magnetocoronal flaring source for IMPS X-ray emission, a scaled-up version of the TTS emission mechanism. IMPS therefore provide powerful probes of isochronal ages for the first ~10Myr in the evolution of a massive stellar population, because their intrinsic, coronal X-ray emission decays rapidly after they commence evolving along radiative tracks. We suggest that the most luminous (in both X-rays and IR) IMPS could be used to place empirical constraints on the location of the intermediate-mass stellar birth line.
- ID:
- ivo://CDS.VizieR/J/ApJ/785/162
- Title:
- YSO candidates in the Magellanic Bridge
- Short Name:
- J/ApJ/785/162
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ~10 M_{sun}_<<45 M_{sun}_ found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ~3xhigher probability than the Bridge for N(H I)>12x10^20^/cm^2^, but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.
- ID:
- ivo://CDS.VizieR/J/ApJ/813/78
- Title:
- z=4.5 and z=5.7 LAEs properties with Spitzer
- Short Name:
- J/ApJ/813/78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results from a stellar population modeling analysis of a sample of 162 z=4.5 and 14 z=5.7 Ly{alpha} emitting galaxies (LAEs) in the Bootes field, using deep Spitzer/IRAC data at 3.6 and 4.5 {mu}m from the Spitzer Ly{alpha} Survey, along with Hubble Space Telescope NICMOS and WFC3 imaging at 1.1 and 1.6 {mu}m for a subset of the LAEs. This represents one of the largest samples of high-redshift LAEs imaged with Spitzer IRAC. We find that 30/162 (19%) of the z=4.5 LAEs and 9/14 (64%) of the z=5.7 LAEs are detected at >=3{sigma} in at least one IRAC band. Individual z=4.5 IRAC-detected LAEs have a large range of stellar mass, from 5x10^8^-10^11^ M_{sun}_. One-third of the IRAC-detected LAEs have older stellar population ages of 100 Myr^-1^ Gyr, while the remainder have ages <100 Myr. A stacking analysis of IRAC-undetected LAEs shows this population to be primarily low mass (8-20x10^8^ M_{sun}_) and young (64-570 Myr). We find a correlation between stellar mass and the dust-corrected ultraviolet-based star formation rate (SFR) similar to that at lower redshifts, in that higher mass galaxies exhibit higher SFRs. However, the z=4.5 LAE correlation is elevated 4-5 times in SFR compared to continuum-selected galaxies at similar redshifts. The exception is the most massive LAEs which have SFRs similar to galaxies at lower redshifts suggesting that they may represent a different population of galaxies than the traditional lower-mass LAEs, perhaps with a different mechanism promoting Ly{alpha} photon escape.
- ID:
- ivo://CDS.VizieR/J/ApJ/822/42
- Title:
- z~3.3 star-forming galaxies NIR spectra
- Short Name:
- J/ApJ/822/42
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the relationship between stellar mass, star formation rate (SFR), ionization state, and gas-phase metallicity for a sample of 41 normal star-forming galaxies at 3<~z<~3.7. The gas-phase oxygen abundance, ionization parameter, and electron density of ionized gas are derived from rest-frame optical strong emission lines measured on near-infrared spectra obtained with Keck/Multi-Object Spectrograph for Infra-Red Exploration. We remove the effect of these strong emission lines in the broadband fluxes to compute stellar masses via spectral energy distribution fitting, while the SFR is derived from the dust-corrected ultraviolet luminosity. The ionization parameter is weakly correlated with the specific SFR, but otherwise the ionization parameter and electron density do not correlate with other global galaxy properties such as stellar mass, SFR, and metallicity. The mass-metallicity relation (MZR) at z~3.3 shows lower metallicity by ~0.7dex than that at z=0 at the same stellar mass. Our sample shows an offset by ~0.3dex from the locally defined mass-metallicity-SFR relation, indicating that simply extrapolating such a relation to higher redshift may predict an incorrect evolution of MZR. Furthermore, within the uncertainties we find no SFR-metallicity correlation, suggesting a less important role of SFR in controlling the metallicity at high redshift. We finally investigate the redshift evolution of the MZR by using the model by Lilly et al. (2013ApJ...772..119L), finding that the observed evolution from z=0 to z~3.3 can be accounted for by the model assuming a weak redshift evolution of the star formation efficiency.
- ID:
- ivo://CDS.VizieR/J/ApJ/886/152
- Title:
- ZTF early observations of Type Ia SNe. I. LCs
- Short Name:
- J/ApJ/886/152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Early-time observations of Type Ia supernovae (SNe Ia) are essential to constrain the properties of their progenitors. In this paper, we present high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018. We describe our method to perform forced point-spread function photometry, which can be applied to other types of extragalactic transients. With a planned cadence of six observations per night (three g + three r), all of the 127 SNe Ia are detected in both g and r bands more than 10 days (in the rest frame) prior to the epoch of g-band maximum light. The redshifts of these objects range from z=0.0181 to 0.165; the median redshift is 0.074. Among the 127 SNe, 50 are detected at least 14 days prior to maximum light (in the rest frame), with a subset of nine objects being detected more than 17 days before g-band peak. This is the largest sample of young SNe Ia collected to date; it can be used to study the shape and color evolution of the rising light curves in unprecedented detail. We discuss six peculiar events in this sample: one 02cx-like event ZTF18abclfee (SN2018crl), one Ia-CSM SN ZTF18aaykjei (SN2018cxk), and four objects with possible super-Chandrasekhar mass progenitors: ZTF18abhpgje (SN2018eul), ZTF18abdpvnd (SN2018dvf), ZTF18aawpcel (SN2018cir), and ZTF18abddmrf (SN2018dsx).