- ID:
- ivo://CDS.VizieR/J/MNRAS/452/3508
- Title:
- Young stellar structures in NGC 6503
- Short Name:
- J/MNRAS/452/3508
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep Hubble Space Telescope photometry obtained with the Legacy ExtraGalactic UV Survey. We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95 percent being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviours, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ~1.7 for length-scales between ~20pc and 2.5kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5kpc. About 60 percent of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behaviour in a time-scale of ~60Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/830/10
- Title:
- >20yrs of HST obs. of Cepheids in SNIa host gal.
- Short Name:
- J/ApJ/830/10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results of an optical search conducted as part of the SH0ES project (Supernovae and H_0_ for the Equation of State of dark energy) for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC4258. The targets include nine newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SNIa hosts, which yielded a total of 2200 variables with well-defined selection criteria, the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H_0_ with a total uncertainty of 2.4%.
- ID:
- ivo://CDS.VizieR/J/ApJ/813/78
- Title:
- z=4.5 and z=5.7 LAEs properties with Spitzer
- Short Name:
- J/ApJ/813/78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results from a stellar population modeling analysis of a sample of 162 z=4.5 and 14 z=5.7 Ly{alpha} emitting galaxies (LAEs) in the Bootes field, using deep Spitzer/IRAC data at 3.6 and 4.5 {mu}m from the Spitzer Ly{alpha} Survey, along with Hubble Space Telescope NICMOS and WFC3 imaging at 1.1 and 1.6 {mu}m for a subset of the LAEs. This represents one of the largest samples of high-redshift LAEs imaged with Spitzer IRAC. We find that 30/162 (19%) of the z=4.5 LAEs and 9/14 (64%) of the z=5.7 LAEs are detected at >=3{sigma} in at least one IRAC band. Individual z=4.5 IRAC-detected LAEs have a large range of stellar mass, from 5x10^8^-10^11^ M_{sun}_. One-third of the IRAC-detected LAEs have older stellar population ages of 100 Myr^-1^ Gyr, while the remainder have ages <100 Myr. A stacking analysis of IRAC-undetected LAEs shows this population to be primarily low mass (8-20x10^8^ M_{sun}_) and young (64-570 Myr). We find a correlation between stellar mass and the dust-corrected ultraviolet-based star formation rate (SFR) similar to that at lower redshifts, in that higher mass galaxies exhibit higher SFRs. However, the z=4.5 LAE correlation is elevated 4-5 times in SFR compared to continuum-selected galaxies at similar redshifts. The exception is the most massive LAEs which have SFRs similar to galaxies at lower redshifts suggesting that they may represent a different population of galaxies than the traditional lower-mass LAEs, perhaps with a different mechanism promoting Ly{alpha} photon escape.
- ID:
- ivo://CDS.VizieR/J/MNRAS/379/1546
- Title:
- z'BVRi' photometry of ClG 0016+1609
- Short Name:
- J/MNRAS/379/1546
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report a definitive confirmation of a large-scale structure around the super rich cluster CL0016+1609 at z=0.55. We made spectroscopic follow-up observations with Faint Object Camera and Spectrograph (FOCAS) on Subaru along the large filamentary structure identified in our previous photometric studies, including some subclumps already found by other authors.
- ID:
- ivo://CDS.VizieR/J/MNRAS/442/946
- Title:
- z~5.7 C IV absorption systems
- Short Name:
- J/MNRAS/442/946
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Metal absorption systems are products of star formation. They are believed to be associated with massive star-forming galaxies, which have significantly enriched their surroundings. To test this idea with high column density CIV absorption systems at z~5.7, we study the projected distribution of galaxies and characterize the environment of CIV systems in two independent quasar lines of sight: J103027.01+052455.0 and J113717.73+354956.9. Using wide-field photometry (~80x60h^-1^ comoving Mpc), we select bright (M_UV(1350{AA})_<~-21.0mag) Lyman break galaxies (LBGs) at z~5.7 in a redshift slice {Delta}z~0.2 and we compare their projected distribution with z~5.7 narrow-band selected Lyman alpha emitters (LAEs, {Delta}z~0.08). We find that the CIV systems are located more than 10h^-1^ projected comoving Mpc from the main concentrations of LBGs and no candidate is closer than ~5h^-1^ projected comoving Mpc. In contrast, an excess of LAEs - lower mass galaxies - is found on scales of ~10h^-1^ comoving Mpc, suggesting that LAEs are the primary candidates for the source of the CIV systems. Furthermore, the closest object to the system in the field J1030+0524 is a faint LAE at a projected distance of 212h^-1^ physical kpc. However, this work cannot rule out undiscovered lower mass galaxies as the origin of these absorption systems. We conclude that, in contrast with lower redshift examples (z<~3.5), strong CIV absorption systems at z~5.7 trace low-to-intermediate density environments dominated by low-mass galaxies. Moreover, the excess of LAEs associated with high levels of ionizing flux agrees with the idea that faint galaxies dominate the ionizing photon budget at this redshift.
- ID:
- ivo://CDS.VizieR/J/ApJ/697/1842
- Title:
- zCOSMOS 10K sample group catalog to z=1
- Short Name:
- J/ApJ/697/1842
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a galaxy group catalog spanning the redshift range 0.1<~z<~1 in the ~1.7deg^2^ COSMOS field, based on the first ~10000 zCOSMOS spectra. The performance of both the Friends-of-Friends (FOF) and Voronoi-Delaunay method (VDM) approaches to group identification has been extensively explored and compared using realistic mock catalogs. We find that the performance improves substantially if groups are found by progressively optimizing the group-finding parameters for successively smaller groups, and that the highest fidelity catalog, in terms of completeness and purity, is obtained by combining the independently created FOF and VDM catalogs. The final completeness and purity of this catalog, both in terms of the groups and of individual members, compares favorably with recent results in the literature. The current group catalog contains 102 groups with N>=5 spectroscopically confirmed members, with a further ~700 groups with 2<=N<=4. Most of the groups can be assigned a velocity dispersion and a dark-matter mass derived from the mock catalogs, with quantifiable uncertainties. The fraction of zCOSMOS galaxies in groups is about 25% at low redshift and decreases toward ~15% at z~0.8. The zCOSMOS group catalog is broadly consistent with that expected from the semianalytic evolution model underlying the mock catalogs.
- ID:
- ivo://CDS.VizieR/J/ApJ/753/121
- Title:
- zCOSMOS 20k sample group catalog to z<~1.2
- Short Name:
- J/ApJ/753/121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an optical group catalog between 0.1<~z<~1 based on 16500 high-quality spectroscopic redshifts in the completed zCOSMOS-bright survey. The catalog published herein contains 1498 groups in total and 192 groups with more than five observed members. The catalog includes both group properties and the identification of the member galaxies. Based on mock catalogs, the completeness and purity of groups with three and more members should be both about 83% with respect to all groups that should have been detectable within the survey, and more than 75% of the groups should exhibit a one-to-one correspondence to the "real" groups. Particularly at high redshift, there are apparently more galaxies in groups in the COSMOS field than expected from mock catalogs. We detect clear evidence for the growth of cosmic structure over the last seven billion years in the sense that the fraction of galaxies that are found in groups (in volume-limited samples) increases significantly with cosmic time. In the second part of the paper, we develop a method for associating galaxies that only have photo-z to our spectroscopically identified groups. We show that this leads to improved definition of group centers, improved identification of the most massive galaxies in the groups, and improved identification of central and satellite galaxies, where we define the former to be galaxies at the minimum of the gravitational potential wells. Subsamples of centrals and satellites in the groups can be defined with purities up to 80%, while a straight binary classification of all group and non-group galaxies into centrals and satellites achieves purities of 85% and 75%, respectively, for the spectroscopic sample.
- ID:
- ivo://CDS.VizieR/J/AJ/151/120
- Title:
- z<1 3CR radio galaxies and quasars star formation
- Short Name:
- J/AJ/151/120
- Date:
- 16 Dec 2021 13:37:06
- Publisher:
- CDS
- Description:
- Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift z<1. The far-infrared (FIR, 70-500 {mu}m) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared Survey Explorer and cataloged data to analyze the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGNs), and cool dust heated by stars. The level of emission from relativistic jets is also estimated to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of 30 {mu}m. The low-excitation radio galaxies and the MIR-weak sources represent an MIR- and FIR-faint AGN population that is different from the high-excitation MIR-bright objects; it remains an open question whether they are at a later evolutionary state or an intrinsically different population. The derived luminosities for host starlight and dust heated by star formation are converted to stellar masses and star-formation rates (SFR). The host-normalized SFR of the bulk of the 3CR sources is low when compared to other galaxy populations at the same epoch. Estimates of the dust mass yield a 1-100 times lower dust/stellar mass ratio than for the Milky Way, which indicates that these 3CR hosts have very low levels of interstellar matter and explains the low level of star formation. Less than 10% of the 3CR sources show levels of star formation above those of the main sequence of star-forming galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/776/71
- Title:
- ZENS: galaxies in groups along the cosmic web. I.
- Short Name:
- J/ApJ/776/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Zurich Environmental Study (ZENS) is based on a sample of ~1500 galaxy members of 141 groups in the mass range ~10^12.5-14.5^M_{sun}_ within the narrow redshift range 0.05<z<0.0585. ZENS adopts novel approaches, described here, to quantify four different galactic environments, namely: (1) the mass of the host group halo; (2) the projected halo-centric distance; (3) the rank of galaxies as central or satellites within their group halos; and (4) the filamentary large-scale structure density. No self-consistent identification of a central galaxy is found in ~40% of <10^13.5^M_{sun}_ groups, from which we estimate that ~15% of groups at these masses are dynamically unrelaxed systems. Central galaxies in relaxed and unrelaxed groups generally have similar properties, suggesting that centrals are regulated by their mass and not by their environment. Centrals in relaxed groups have, however, ~30% larger sizes than in unrelaxed groups, possibly due to accretion of small satellites in virialized group halos. At M>10^10^M_{sun}_, satellite galaxies in relaxed and unrelaxed groups have similar size, color, and (specific) star formation rate distributions; at lower galaxy masses, satellites are marginally redder in relaxed relative to unrelaxed groups, suggesting quenching of star formation in low-mass satellites by physical processes active in relaxed halos. Overall, relaxed and unrelaxed groups show similar stellar mass populations, likely indicating similar stellar mass conversion efficiencies.
3850. ZFIRE v1.0 data release
- ID:
- ivo://CDS.VizieR/J/ApJ/828/21
- Title:
- ZFIRE v1.0 data release
- Short Name:
- J/ApJ/828/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an overview and the first data release of ZFIRE, a spectroscopic redshift survey of star-forming galaxies that utilizes the MOSFIRE instrument on Keck-I to study galaxy properties in rich environments at 1.5<z<2.5. ZFIRE measures accurate spectroscopic redshifts and basic galaxy properties derived from multiple emission lines. The galaxies are selected from a stellar mass limited sample based on deep near infrared imaging (K_AB_<25) and precise photometric redshifts from the ZFOURGE and UKIDSS surveys as well as grism redshifts from 3DHST. Between 2013 and 2015, ZFIRE has observed the COSMOS and UDS legacy fields over 13 nights and has obtained 211 galaxy redshifts over 1.57<z<2.66 from a combination of nebular emission lines (such as H{alpha}, [NII], H{beta}, [OII], [OIII], and [SII]) observed at 1-2{mu}m. Based on our medium-band near infrared photometry, we are able to spectrophotometrically flux calibrate our spectra to ~10% accuracy. ZFIRE reaches 5{sigma} emission line flux limits of ~3x10^-18^erg/s/cm^2^ with a resolving power of R=3500 and reaches masses down to ~10^9^M_{sun}_. We confirm that the primary input survey, ZFOURGE, has produced photometric redshifts for star-forming galaxies (including highly attenuated ones) accurate to {Delta}z/(1+z_spec_)=0.015 with 0.7% outliers. We measure a slight redshift bias of <0.001, and we note that the redshift bias tends to be larger at higher masses. We also examine the role of redshift on the derivation of rest-frame colors and stellar population parameters from SED fitting techniques. The ZFIRE survey extends spectroscopically confirmed z~2 samples across a richer range of environments, here we make available the first public release of the data for use by the community.