- ID:
- ivo://CDS.VizieR/J/AZh/88/284
- Title:
- Chemical abundance of Hercules moving group
- Short Name:
- J/AZh/88/284
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The results of a comparative analysis of the kinematics, ages, and elemental abundances for 17 red giants in the Hercules moving group are presented. Model atmospheres are used to determine the parameters of the stellar atmospheres and the abundances of about 20 elements. The masses and ages of the stars are estimated, and the components of their Galactic velocities and the elements of their Galactic orbits are calculated. Our analysis demonstrates that the Hercules stream is a heterogeneous group of objects from the thin and thick disks.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/161/183
- Title:
- Chemical abundances in 52 M-giant stars
- Short Name:
- J/AJ/161/183
- Date:
- 18 Jan 2022
- Publisher:
- CDS
- Description:
- We measured ^35^Cl abundances in 52-M giants with metallicities in the range -0.5<[Fe/H]<0.12. Abundances and atmospheric parameters were derived using infrared spectra from CSHELL on the NASA Infrared Telescope Facility and from optical echelle spectra. We measured Cl abundances by fitting a H^35^Cl molecular feature at 3.6985{mu}m with synthetic spectra. We also measured the abundances of O, Ca, Ti, and Fe using atomic absorption lines. We find that the [Cl/Fe] ratio for our stars agrees with chemical evolution models of Cl, and the [Cl/Ca] ratio is broadly consistent with the solar ratio over our metallicity range. Both indicate that Cl is primarily made in core-collapse supernovae with some contributions from Type Ia supernovae. We suggest that other potential nucleosynthesis processes, such as the {nu}-process, are not significant producers of Cl. Finally, we also find our Cl abundances are consistent with HII and planetary nebular abundances at a given oxygen abundance, although there is scatter in the data.
- ID:
- ivo://CDS.VizieR/J/ApJ/824/5
- Title:
- Chemical abundances in NGC 5024 (M53)
- Short Name:
- J/ApJ/824/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5m telescope. M53 is of interest because previous studies based on the morphology of the cluster's horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H]=-2.07 with a standard deviation of 0.07dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na-O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.
- ID:
- ivo://CDS.VizieR/J/AJ/160/181
- Title:
- Chemical abundances in red giants with Magellan
- Short Name:
- J/AJ/160/181
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high-resolution Magellan/MIKE spectroscopy of 42 red giant stars in seven stellar streams confirmed by the Southern Stellar Stream Spectroscopic Survey (S5): ATLAS, Aliqa Uma, Chenab, Elqui, Indus, Jhelum, and Phoenix. Abundances of 30 elements have been derived from over 10000 individual line measurements or upper limits using photometric stellar parameters and a standard LTE analysis. This is currently the most extensive set of element abundances for stars in stellar streams. Three streams (ATLAS, Aliqa Uma, and Phoenix) are disrupted metal-poor globular clusters, although only weak evidence is seen for the light-element anticorrelations commonly observed in globular clusters. Four streams (Chenab, Elqui, Indus, and Jhelum) are disrupted dwarf galaxies, and their stars display abundance signatures that suggest progenitors with stellar masses ranging from 106 to 107M{sun}. Extensive description is provided for the analysis methods, including the derivation of a new method for including the effect of stellar parameter correlations on each star's abundance and uncertainty. This paper includes data gathered with the 6.5m Magellan Telescopes located at Las Campanas Observatory, Chile.
- ID:
- ivo://CDS.VizieR/J/A+A/562/A146
- Title:
- Chemical abundances of 8 metal-poor stars
- Short Name:
- J/A+A/562/A146
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determine chemical compositions of six red giant stars in the Bootes I dwarf spheroidal galaxy, based on the high-resolution spectra obtained with the High Dispersion Spectrograph mounted on the Subaru Telescope. Abundances of 12 elements, including C, Na, alpha, Fe-peak, and neutron capture elements, were determined for the sample stars. The abundance results were compared to those in field Milky Way halo stars previously obtained using an abundance analysis technique similar to the present study. We confirm the low metallicity of Boo-094 ([Fe/H]=-3.4). Except for this star, the abundance ratios ([X/Fe]) of elements lighter than zinc are generally homogeneous with small scatter around the mean values in the metallicities spanned by the other five stars (-2.7<[Fe/H]<-1.8). Specifically, all of the sample stars with [Fe/H]>-2.7 show no significant enhancement of carbon. The [Mg/Fe] and [Ca/Fe] ratios are almost constant with a modest decreasing trend with increasing [Fe/H] and are slightly lower than the field halo stars. The [Sr/Fe] and [Sr/Ba] ratios also tend to be lower in the Bootes I stars than in the halo stars. Our results of small scatter in the [X/Fe] ratios for elements lighter than zinc suggest that these abundances were homogeneous among the ejecta of prior generation(s) of stars in this galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/425/187
- Title:
- Chemical abundances of 23 subgiants & giants
- Short Name:
- J/A+A/425/187
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Chemical abundances, stellar parameters, and atomic and molecular line data are given for a study of 23 subgiant and giant stars in the solar vicinity. With the exception of Li and possibly C we show that subgiant stars show no "chemical" traces of post-main-sequence evolution and that they are therefore and because of their simple age dating very useful targets for studies of galactic chemical evolution.
- ID:
- ivo://CDS.VizieR/J/ApJ/695/L134
- Title:
- Chemical anomalies in old LMC clusters
- Short Name:
- J/ApJ/695/L134
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- By using the multifiber spectrograph FLAMES mounted at the ESO-VLT, we have obtained high-resolution spectra for 18 giant stars, belonging to three old globular clusters of the Large Magellanic Cloud (namely NGC 1786, 2210, and 2257). While stars in each cluster showed quite homogeneous iron content, within a few cents of dex (the mean values being [Fe/H]=-1.75+/-0.01dex, -1.65+/-0.02dex and -1.95+/-0.02dex for NGC 1786, 2210, and 2257, respectively), we have detected significant inhomogeneities for the [Na/Fe], [Al/Fe], [O/Fe], and [Mg/Fe] abundance ratios, with evidence of [O/Fe] versus [Na/Fe] and [Mg/Fe] versus [Al/Fe] anticorrelations. The trends detected nicely agree with those observed in Galactic Globular Clusters, suggesting that such abundance anomalies are ubiquitous features of old stellar systems and they do not depend on the parent galaxy environment. In NGC 1786 we also detected two extreme O-poor, Na-rich stars. This is the first time that a firm signature of extreme chemical abundance anomalies has been found in an extragalactic stellar cluster.
- ID:
- ivo://CDS.VizieR/J/A+A/599/A97
- Title:
- Chemical composition of globular cluster NGC 6426
- Short Name:
- J/A+A/599/A97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widths and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H]=-2.34+/-0.05dex (stat.) in accordance with previous studies. At a mean {alpha}-abundance of [(Mg,Si,Ca)/3Fe]=0.39+/-0.03dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter {alpha}-elements as well as the enhanced ratio [Zn/Fe]=0.39dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn point towards an enrichment history governed by the r-process with only little - if any - sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317.
- ID:
- ivo://CDS.VizieR/J/AJ/136/375
- Title:
- Chemical composition of LMC red giants
- Short Name:
- J/AJ/136/375
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper presents the chemical abundance analysis of a sample of 27 red giant stars located in four populous intermediate-age globular clusters in the Large Magellanic Cloud, namely NGC 1651, 1783, 1978, and 2173. This analysis is based on high-resolution (R~47000) spectra obtained with the UVES@VLT spectrograph. For each cluster we derived up to 20 abundance ratios sampling the main chemical elemental groups, namely light odd-Z, {alpha} iron-peak, and neutron-capture elements.
- ID:
- ivo://CDS.VizieR/J/ApJ/717/277
- Title:
- Chemical composition of old LMC clusters
- Short Name:
- J/ApJ/717/277
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper presents the chemical abundance analysis of a sample of 18 giant stars in three old globular clusters in the Large Magellanic Cloud (LMC), NGC 1786, NGC 2210, and NGC 2257. The derived iron content is [Fe/H]=-1.75+/-0.01dex ({sigma}=0.02dex), -1.65+/-0.02dex ({sigma}=0.04dex), and -1.95+/-0.02dex ({sigma}=0.04dex) for NGC 1786, NGC 2210, and NGC 2257, respectively. All the clusters exhibit similar abundance ratios, with enhanced values (~+0.30dex) of [{alpha}/Fe], consistent with the Galactic halo stars, thus indicating that these clusters have formed from a gas enriched by Type II supernovae. We also found evidence that r-process is the main channel of production of the measured neutron capture elements (Y, Ba, La, Nd, Ce, and Eu). In particular, the quite large enhancement of [Eu/Fe] (~+0.70dex) found in these old clusters clearly indicates a relevant efficiency of the r-process mechanism in the LMC environment.