- ID:
- ivo://CDS.VizieR/J/A+A/598/A100
- Title:
- Abundances of disk giants: O, Mg, Ca and Ti
- Short Name:
- J/A+A/598/A100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Galactic bulge is an intriguing and significant part of our Galaxy, but it is hard to observe because it is both distant and covered by dust in the disk. Therefore, there are not many high-resolution optical spectra of bulge stars with large wavelength coverage, whose determined abundances can be compared with nearby, similarly analyzed stellar samples. We aim to determine the diagnostically important alpha elements of a sample of bulge giants using high-resolution optical spectra with large wavelength coverage. The abundances found are compared to similarly derived abundances from similar spectra of similar stars in the local thin and thick disks. In this first paper we focus on the solar neighborhood reference sample. We used spectral synthesis to derive the stellar parameters as well as the elemental abundances of both the local and bulge samples of giants. We took special care to benchmark our method of determining stellar parameters against independent measurements of effective temperatures from angular diameter measurements and surface gravities from asteroseismology. In this first paper we present the method used to determine the stellar parameters and elemental abundances, evaluate them, and present the results for our local disk sample of 291 giants. When comparing our determined spectroscopic temperatures to those derived from angular diameter measurements, we reproduce these with a systematic difference of +10K and a standard deviation of 53K. The spectroscopic gravities reproduce those determined from asteroseismology with a systematic offset of +0.10dex and a standard deviation of 0.12dex. When it comes to the abundance trends, our sample of local disk giants closely follows trends found in other works analyzing solar neighborhood dwarfs, showing that the much brighter giant stars are as good abundance probes as the often used dwarfs.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/515/A28
- Title:
- Abundances of dwarfs and giants in 2 open clusters
- Short Name:
- J/A+A/515/A28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It has been suggested that the classical chemical analysis may be affected by systematic errors that would introduce abundance differences between dwarfs and giants. For some elements, the abundance difference could be real. We address the issue by observing 2 solar-type dwarfs in NGC 5822 and 3 in IC 4756, and comparing their composition with that of 3 giants in either of the aforementioned clusters. We determine iron abundance and stellar parameters for dwarf stars. Then, abundances of calcium, sodium, nickel, titanium, aluminium, chromium, and silicon were determined for both giants and dwarfs. The standard equivalent width analysis was performed differentially with respect to the Sun. We find an iron abundance for dwarf stars equal to solar to within the margins of error for IC 4756, and slightly above for NGC 5822 ([Fe/H]=0.01 and 0.05dex respectively). We show that, for sodium, silicon, and titanium, abundances of giants are significantly higher than those of the dwarfs of the same cluster (about 0.15, 0.15, and 0.35dex). Other elements may also undergo some enhanced, but all within 0.1dex.
- ID:
- ivo://CDS.VizieR/J/ApJ/878/99
- Title:
- Abundances of dwarfs & giants in NGC752 with HIRES
- Short Name:
- J/ApJ/878/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The chemical composition of stars in open clusters provides the best information on the chemical evolution of stars via comparison of main-sequence stars with evolved giants. This is a case study of the abundances in the dwarfs and giants in the old open cluster NGC 752. It is also a pilot program for automated abundance determinations, including equivalent-width measurements, stellar parameter determinations, and abundance analysis. We have found abundances of 31 element-ion combinations in 23 dwarfs and six giants. The mean cluster abundance of Fe is solar with [Fe/H]=-0.01+/-0.06 with no significant difference between the dwarfs and giants. We find that the cluster abundances of other elements, including alpha-elements, to be at or slightly above solar levels. We find some evidence for CNO processing in the spectra of the giants. The enhancement of Na in giants indicates that the NeNa cycle has occurred. The abundances of Mg and Al are similar in the dwarfs and giants, indicating that the hotter MgAl cycle has not occurred. We find no evidence of s-process enhancements in the abundances of heavy elements in the giants.
- ID:
- ivo://CDS.VizieR/J/A+A/511/A56
- Title:
- Abundances of five open clusters
- Short Name:
- J/A+A/511/A56
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The present number of Galactic open clusters that have high resolution abundance determinations, not only of [Fe/H], but also of other key elements, is largely insufficient to enable a clear modeling of the Galactic disk chemical evolution. To increase the number of Galactic open clusters with high quality measurements, we obtained high resolution (R~30000), high quality (S/N~50-100 per pixel), echelle spectra with the fiber spectrograph FOCES, at Calar Alto, Spain, for three red clump stars in each of five Open Clusters. We used the classical equivalent width analysis method to obtain accurate abundances of sixteen elements: Al, Ba, Ca, Co, Cr, Fe, La, Mg, Na, Nd, Ni, Sc, Si, Ti, V, and Y. We also derived the oxygen abundance using spectral synthesis of the 6300{AA} forbidden line.
- ID:
- ivo://CDS.VizieR/J/AJ/139/2289
- Title:
- Abundances of five red giants in M5
- Short Name:
- J/AJ/139/2289
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present LTE chemical abundances for five red giants and one AGB star in the Galactic globular cluster (GC) M5 based on high-resolution spectroscopy using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan 6.5m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus.
- ID:
- ivo://CDS.VizieR/J/A+A/513/A35
- Title:
- Abundances of Galactic red giants
- Short Name:
- J/A+A/513/A35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemental abundance analysis of alpha- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. We use high-resolution optical spectra of 25 bulge giants in Baade's window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (-1.5<[Fe/H]<+0.5). A standard 1D local thermodynamic equilibrium analysis using both Kurucz and MARCS models yielded the abundances of O, Na, Mg, Al, Si, Ca, Ti and Fe. Our homogeneous and differential analysis of the Galactic stellar populations ensured that systematic errors were minimized.
- ID:
- ivo://CDS.VizieR/J/A+A/480/79
- Title:
- Abundances of giants in five Galactic clusters
- Short Name:
- J/A+A/480/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To constrain the formation and chemical evolution of the Galactic disk, we surveyed open clusters of different ages, metal contents, and distances form the Galactic centre. We employed FLAMES on VLT-UT2 to collect UVES spectra of five to ten giant stars in each of the selected clusters, and used them to derive the iron abundance and the detailed chemical composition. Equivalent widths were measured and abundance analysis was performed using the MOOG code and Kurucz model atmospheres on all stars accepted as cluster member on the basis of their radial velocity. We derived the atmospheric parameters and the abundance of Fe for NGC 2324 and NGC 2477 (average [Fe/H]=-0.17 with rms 0.05dex, and +0.07 with rms 0.03dex, respectively), two clusters never analyzed using high resolution spectroscopy. We also derived the abundances of Mg, Al, Ca, Si, Ti, Cr, Ni, and Ba for these two clusters and for NGC 2660, NGC 3960, and Berkeley 32, whose atmospheric parameters and metallicities were measured in a previous paper. We determined the reddening values for the five clusters, based on the spectroscopically determined temperatures, literature photometry, and a colour-temperature relation. All clusters show solar-scaled abundances for alpha- and Fe-peak elements, while [Na/Fe] appears slightly enhances and and [Ba/Fe] significantly enhanced. Our findings were compared to thin-disk stars and other open clusters, and no significant deviation from the standard behavior was found.
- ID:
- ivo://CDS.VizieR/J/A+A/488/943
- Title:
- Abundances of giants in four Galactic clusters
- Short Name:
- J/A+A/488/943
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To constrain the formation and chemical evolution of the Galactic disk, we surveyed open clusters of different ages, metal contents, and distances form the Galactic centre. We employed FLAMES on VLT-UT2 to collect UVES spectra of bright giant stars in each of the selected clusters, and used them to derive the iron abundance and the detailed chemical composition. Equivalent widths were measured and abundance analysis was performed using the MOOG code and Kurucz model atmospheres. We derived the abundance of Fe for Mg, Al, Ca, Si, Ti, Cr, Ni, and Ba. We employed direct line profile fitting to derive non-LTE Na abundances. We found [Fe/H]=-0.30, -0.31, +0.13, -0.33 for Be 20, Be 29, Cr 261, and Melotte 66, respectively (with rms values of 0.02 to 0.05dex). Alpha- and Fe-peak elements have solar ratios, Ba is enhanced, and Na has solar ratios, suggesting that treatment of non-LTE is very important. We confirm the presence of a metallicity gradient in the inner disk, and a flattening in the outer part.
- ID:
- ivo://CDS.VizieR/J/A+A/554/A81
- Title:
- Abundances of 16 giants in M75
- Short Name:
- J/A+A/554/A81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- M75 is a relatively young Globular Cluster (GC) found at 15kpc from the Galactic centre at the transition region between the inner and outer Milky Way halos. Our aims are to perform a comprehensive abundance study of a variety of chemical elements in this GC such as to investigate its chemical enrichment history in terms of early star formation, and to search for any multiple populations. We have obtained high resolution spectroscopy with the MIKE instrument at the Magellan telescope for 16 red giant stars. Their membership within the GC is confirmed from radial velocity measurements. Our chemical abundance analysis is performed via equivalent width measurements and spectral synthesis, assuming local thermodynamic equilibrium (LTE). We present the first comprehensive abundance study of M75 to date. The cluster is metal-rich ([Fe/H]=-1.16+/-0.02dex, [alpha/Fe]=+0.30+/-0.02dex), and shows a marginal spread in [Fe/H] of 0.07dex, typical of most GCs of similar luminosity. A moderately extended O-Na anticorrelation is clearly visible, likely showing three generations of stars, formed on a short timescale. Additionally the two most Na-rich stars are also Ba-enhanced by 0.4 and 0.6dex, respectively, indicative of pollution by lower mass (M~4-5M_{sun}_) Asymptotic Giant Branch (AGB) stars. The overall n-capture element pattern is compatible with predominant r-process enrichment, which is rarely the case in GCs of such a high metallicity.
- ID:
- ivo://CDS.VizieR/J/ApJ/732/108
- Title:
- Abundances of 92 giants in Plaut's window
- Short Name:
- J/ApJ/732/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Fe, Si, and Ca abundances for 61 giants in Plaut's window (l=-1{deg}, b=-8.5{deg}) and Fe abundances for an additional 31 giants in a second, nearby field (l=0{deg}, b=-8{deg}) derived from high-resolution (R~25000) spectra obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. The median metallicity of red giant branch (RGB) stars in the Plaut's field is ~0.4dex lower than those in Baade's window, and confirms the presence of an iron abundance gradient along the bulge minor axis. The full metallicity range of our (biased) RGB sample spans -1.5<[Fe/H]<+0.3, which is similar to that found in other bulge fields. We also derive a photometric metallicity distribution function for RGB stars in the (l=-1{deg}, b=-8.5{deg}) field and find very good agreement with the spectroscopic metallicity distribution. The radial velocity (RV) and dispersion data for the bulge RGB stars are in agreement with previous results of the Bulge Radial Velocity Assay survey, and we find evidence for a decreasing velocity dispersion with increasing [Fe/H]. The [{alpha}/Fe] enhancement in Plaut field stars is nearly identical to that observed in Baade's window, and suggests that an [{alpha}/Fe] gradient does not exist between b=-4{deg} and -8{deg}. Additionally, a subset of our sample (23 stars) appears to be foreground red clump stars that are very metal rich, exhibit small metallicity and RV dispersions, and are enhanced in {alpha} elements. While these stars likely belong to the Galactic inner disk population, they exhibit [{alpha}/Fe] ratios that are enhanced above the thin and thick disk.