- ID:
- ivo://CDS.VizieR/J/A+A/641/A142
- Title:
- Post-AGB candidates in LMC and SMC SALT spectra
- Short Name:
- J/A+A/641/A142
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We selected a sample of post-AGB candidates in the Magellanic Clouds on the basis of their near- and mid-infrared colour characteristics. Fifteen of the most optically bright post-AGB candidates were observed with the South African Large Telescope in order to determine their stellar parameters and thus to validate or discriminate their nature as post-AGB objects in the Magellanic Clouds. The spectral types of absorption-line objects were estimated according to the MK classification, and effective temperatures were obtained by means of stellar atmosphere modelling. Emission-line objects were classified on the basis of the fluxes of the emission lines and the presence of the continuum. Out of 15 observed objects, only 4 appear to be genuine post-AGB stars (27%). In the SMC, 1 out of 4 is post-AGB, and in the LMC, 3 out 11 are post-AGB objects. Thus, we can conclude that the selected region in the colour-colour diagram, while selecting the genuine post-AGB objects, overlaps severely with other types of objects, in particular young stellar objects and planetary nebulae. Additional classification criteria are required to distinguish between post-AGB stars and other types of objects. In particular, photometry at far-IR wavelengths would greatly assist in distinguishing young stellar objects from evolved ones. On the other hand, we showed that the low-resolution optical spectra appear to be sufficient to determine whether the candidates are post-AGB objects.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/439/2211
- Title:
- Post-AGB/RGB and YSOs in SMC
- Short Name:
- J/MNRAS/439/2211
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) candidates in the Small Magellanic Cloud (SMC). First, we used mid-IR observations from the Spitzer Space Telescope to select optically visible candidates with excess mid-IR flux and then we obtained low-resolution optical spectra for 801 of the candidates. After removing poor-quality spectra and contaminants, such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies, we ended up with a final sample of 63 high-probability post-AGB/RGB candidates of A-F spectral type. From the spectral observations, we estimated the stellar parameters: effective temperature (T_eff_), surface gravity (logg) and metallicity ([Fe/H]). We also estimated the reddening and deduced the luminosity using the stellar parameters combined with photometry. For the post-AGB/RGB candidates, we found that the metallicity distribution peaks at [Fe/H]~-1.00dex. Based on a luminosity criterion, 42 of these 63 sources were classified as post-red giant branch (post-RGB) candidates and the remaining 21 as post-AGB candidates. From the spectral energy distributions, we were able to infer that 6 of the 63 post-AGB/RGB candidates have a surrounding circumstellar shell suggesting that they are single stars, while 27 of the post-AGB/RGB candidates have a surrounding disc, suggesting that they lie in binary systems. For the remaining 30 post-AGB/RGB candidates the nature of the circumstellar environment was unclear. Variability is displayed by 38 of the 63 post-AGB/RGB candidates with the most common variability types being the Population II Cepheids (including RV-Tauri stars) and semiregular variables. This study has also revealed a new RV Tauri star in the SMC, J005107.19-734133.3, which shows signs of s-process enrichment. From the numbers of post-AGB/RGB stars in the SMC, we were able to estimate evolutionary rates. We find that the number of post-AGB and post-RGB candidates that we have identified are in good agreement with the stellar evolution models with some mass-loss in the post-AGB phase and a small amount of re-accretion in the lower luminosity post-RGB phase. This study also resulted in a new sample of 40 young stellar objects (YSOs) of A-F spectral type. The 40 YSO candidates for which we could estimate stellar parameters are luminous and of high mass (~3-10M_{sun}_). They lie on the cool side of the usually adopted birthline in the HR-diagram. This line separates visually obscured protostars from optically visible pre-main-sequence stars, meaning that our YSO candidates have become optically visible in the region of the HR diagram usually reserved for obscured protostars. Additionally, we also identified a group of 63 objects whose spectra are dominated by emission lines and in some cases, a significant UV continuum. These objects are very likely to be either hot post-AGB/RGB candidates or luminous YSOs.
- ID:
- ivo://CDS.VizieR/J/ApJ/769/40
- Title:
- Potassium abundance in red giants of GCs
- Short Name:
- J/ApJ/769/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Two independent studies recently uncovered two distinct populations among giants in the distant, massive globular cluster (GC) NGC 2419. One of these populations has normal magnesium (Mg) and potassium (K) abundances for halo stars: enhanced Mg and roughly solar K. The other population has extremely depleted Mg and very enhanced K. To better anchor the peculiar NGC 2419 chemical composition, we have investigated the behavior of K in a few red giant branch stars in NGC 6752, NGC 6121, NGC 1904, and {omega} Cen. To verify that the high K abundances are intrinsic and not due to some atmospheric features in giants, we also derived K abundances in less evolved turn-off and subgiant stars of clusters 47 Tuc, NGC 6752, NGC 6397, and NGC 7099. We normalized the K abundance as a function of the cluster metallicity using 21 field stars analyzed in a homogeneous manner. For all GCs of our sample, the stars lie in the K-Mg abundance plane on the same locus occupied by the Mg-normal population in NGC 2419 and by field stars. This holds for both giants and less-evolved stars. At present, NGC 2419 seems unique among GCs.
- ID:
- ivo://CDS.VizieR/J/ApJ/852/49
- Title:
- Properties of metal-poor stars in APOGEE DR13
- Short Name:
- J/ApJ/852/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We find two chemically distinct populations separated relatively cleanly in the [Fe/H]-[Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities [Fe/H]<-0.9) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the {alpha}-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote "the HMg population") exhibits a significant net Galactic rotation, whereas the low-Mg population (or "the LMg population") has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with in situ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low- and high-{alpha} halo stars found in previous studies, suggesting that these are samples of the same two populations.
- ID:
- ivo://CDS.VizieR/J/ApJ/889/63
- Title:
- Properties of Sgr Stars
- Short Name:
- J/ApJ/889/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using 3D positions and kinematics of stars relative to the Sagittarius (Sgr) orbital plane and angular momentum, we identify 166 Sgr stream members observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) that also have Gaia DR2 astrometry. This sample of 63/103 stars in the Sgr trailing/leading arm is combined with an APOGEE sample of 710 members of the Sgr dwarf spheroidal core (385 of them newly presented here) to establish differences of 0.6dex in median metallicity and 0.1dex in [{alpha}/Fe] between our Sgr core and dynamically older stream samples. Mild chemical gradients are found internally along each arm, but these steepen when anchored by core stars. With a model of Sgr tidal disruption providing estimated dynamical ages (i.e., stripping times) for each stream star, we find a mean metallicity gradient of 0.12+/-0.03dex/Gyr for stars stripped from Sgr over time. For the first time, an [{alpha}/Fe] gradient is also measured within the stream, at 0.02_/-0.01dex/Gyr using magnesium abundances and at 0.04+/-0.01dex/Gyr^ using silicon, which imply that the Sgr progenitor had significant radial abundance gradients. We discuss the magnitude of those inferred gradients and their implication for the nature of the Sgr progenitor within the context of the current family of Milky Way satellite galaxies, and we suggest that more sophisticated Sgr models are needed to properly interpret the growing chemodynamical detail we have on the Sgr system.
- ID:
- ivo://CDS.VizieR/J/ApJ/859/L8
- Title:
- Properties of TriAnd stars
- Short Name:
- J/ApJ/859/L8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy, or a distant extension of the Galactic disk. We test these hypotheses using the chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Survey-IV's (SDSS-IV's) 14th Data Release (DR14) of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about -0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H]~-0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity-i.e., past a Galactocentric radius of 24kpc-albeit vertically perturbed about 7kpc below the nominal disk midplane in this region of the Galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/430/165
- Title:
- Radial velocities for 6691 K and M giants
- Short Name:
- J/A+A/430/165
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The table provides Hipparcos positions, Hipparcos & Tycho-2 proper motions, and CORAVEL radial velocities for 6691 K and M giants in the solar neighbourhood, mostly from the Hipparcos survey. A bayesian maximum-likelihood approach has been used to derive the distances and space velocities. New V-I indices, computed from a color transformation based on Hp-V_T2_, are also provided. Spectroscopic binaries have been identified as well. These data may be used to study the kinematics of giant stars in the solar neighbourhood, and to correlate it with their location in the Hertzsprung-Russell diagram.
- ID:
- ivo://CDS.VizieR/J/A+A/485/303
- Title:
- Radial velocities for 1309 stars and 166 OCl
- Short Name:
- J/A+A/485/303
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the final catalogues of a long term observing program performed with the two Coravel spectrovelocimeters for red giants in open clusters. The main aims were to detect spectroscopic binaries and determine their orbital parameters, determine the membership, and compute mean velocities for the stars and open clusters. We computed weighted mean radial velocities for 1309 stars from 10517 individual observations, including the systemic radial velocities from spectroscopic orbits and for Cepheids. The final results are contained in three catalogues collecting 10517 individual radial velocities, mean radial velocities for 1309 red giants, and mean radial velocities for 166 open clusters, among which 57 are new determinations. We identify 891 members and 418 non-members. We discovered a total of 288 spectroscopic binaries, among which 57 were classified as non-members. In addition 27 stars were judged to be variable in radial velocities, all of them being red supergiants.
- ID:
- ivo://CDS.VizieR/J/A+A/613/A47
- Title:
- Radial velocities of 12 evolved stars
- Short Name:
- J/A+A/613/A47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present radial velocities and line bisectors for 12 giants with high Li abundance. We report the discovery of two new planetary systems around HD238914 and TYC3318-01333-1, reveal a binary Li-rich giant HD181368. Although our current phase coverage is not complete, we suggest the presence of planetary mass companions around TYC3663-01966-1 and TYC3105-00152-1. We confirm the previous result for BD+48 740 (Adamow et al, 2012ApJ...754L..15A).
- ID:
- ivo://CDS.VizieR/J/ApJ/798/23
- Title:
- Radial velocities of giant stars in NGC 6388
- Short Name:
- J/ApJ/798/23
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new radial velocity measurements for 82 stars, members of the Galactic globular cluster (GC) NGC 6388, obtained from ESO-VLT K-band Multi Object Spectrograph (KMOS) spectra acquired during the instrument Science Verification. The accuracy of the wavelength calibration is discussed and a number of tests of the KMOS response are presented. The cluster systemic velocity obtained (81.3+/-1.5km/s) is in very good agreement with previous determinations. While a hint of ordered rotation is found between 9" and 20" from the cluster center, where the distribution of radial velocities is clearly bimodal, more data are needed before drawing any firm conclusions. The acquired sample of radial velocities has also been used to determine the cluster velocity dispersion (VD) profile between ~9" and 70", supplementing previous measurements at r<2" and r>60" obtained with ESO-SINFONI and ESO-FLAMES spectroscopy, respectively. The new portion of the VD profile nicely matches the previous ones, better defining the knee of the distribution. The present work clearly shows the effectiveness of a deployable integral field unit in measuring the radial velocities of individual stars for determining the VD profile of Galactic GCs. It represents the pilot project for an ongoing large program with KMOS and FLAMES at the ESO-VLT, aimed at determining the next generation of VD and rotation profiles for a representative sample of GCs.