- ID:
- ivo://CDS.VizieR/J/A+A/650/A156
- Title:
- Cluster formation toward Be87/ON2. I.
- Short Name:
- J/A+A/650/A156
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Disentangling line-of-sight alignments of young stellar populations is crucial for observational studies of star-forming complexes. This task is particularly problematic in a Cygnus-X subregion where several components, located at different distances, overlap: the Berkeley 87 young massive cluster, the poorly known [DB2001] Cl05 embedded cluster, and the ON2 star-forming complex, which in turn is composed of several HII regions. We provide a methodology for building an exhaustive census of young objects that can consistently treat large differences in extinction and distance. OMEGA2000 near-infrared observations of the Berkeley 87 / ON2 field were merged with archival data from Gaia, Chandra, Spitzer, and Herschel, and with cross-identifications from the literature. To address the incompleteness effects and selection biases that arise from the line-of-sight overlap, we adapted existing methods for extinction estimation and young object classification. We also defined the intrinsic reddening index, R_int_, a new tool for separating intrinsically red sources from those whose infrared color excess is caused by extinction. Finally, we introduce a new method for finding young stellar objects based on R_int_. We find 571 objects whose classification is related to recent or ongoing star formation. Together with other point sources with individual estimates of distance or extinction, we compile a catalog of 3005 objects to be used for further membership work. A new distance for Berkeley 87, (1673+/-17)pc, is estimated as a median of 13 spectroscopic members with accurate Gaia EDR3 parallaxes. The flexibility of our approach, especially regarding the R_int_ definition, allows overcoming photometric biases caused by large variations in extinction and distance, in order to obtain homogeneous catalogs of young sources. The multiwavelength census that results from applying our methods to the Berkeley 87 / ON2 field will serve as a basis for disentangling the overlapped populations.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/427/1830
- Title:
- 20cm survey of the AKARI SEP (ATCA-ADFS)
- Short Name:
- J/MNRAS/427/1830
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The results of a deep radio survey at 20cm wavelength are reported for a region containing the AKARI Deep Field South (ADF-S) near the South Ecliptic Pole (SEP), using the Australia Telescope Compact Array (ATCA). The survey (hereafter referred to as the ATCA-ADFS survey) has 1{sigma} detection limits ranging from 18.7 to 50{mu}Jy/beam over an area of ~1.1deg^2^, and ~ 2.5deg^2^ to lower sensitivity. The observations, data reduction and source count analysis are presented along with a description of the overall scientific objectives, and a catalogue containing 530 radio sources detected with a resolution of 6.2x4.9arcsec.
- ID:
- ivo://CDS.VizieR/J/A+A/489/1271
- Title:
- CO and OH abundances of 23 K-M giants
- Short Name:
- J/A+A/489/1271
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on the high resolution infrared spectra observed with the Fourier Transform Spectrometer (FTS) at the 4m telescope of the Kitt Peak National Observatory (KPNO), ro-vibrational lines of ^12^C^16^O, ^13^C^16^O, ^12^C^17^O, and ^16^OH were measured. Some details of the observed spectra including the resolution, S/N ratio, and data of observation are given in table2. The spectroscopic and equivalent width data are given in table3 for 23 red giant stars. The resulting data are used to investigate the nature of the infrared spectra of K-M giant stars. It is found that only the weak lines (log(W/nu)<-4.75) carry the information on the photosphere and hence can be used to extract the nature of the photosphere such as the stellar abundances. The intermediate-strength (-4.75<log(W/nu)<-4.40) as well as the strong (log(W/nu)>-4.4) lines are badly disturbed by the lines of non-photospheric origin. In other words, most lines dominating the infrared spectra, except for the weak lines, are actually hybrid of at least two different kinds of lines originating in the photosphere and in an extra molecular layers outside of photosphere. The nature of the extra layers is not known well, but it may be related to the molecular envelope producing H_2_O lines, not only in late M but also in early M giants as well. Also, the intermediate-strength lines include those with LEP as high as 2eV and hence the extra molecular layer should be quite warm. For the reason outlined above, we determine C, O, and their isotopic abundances using only the weak lines, but we listed the measured data not only of the weak lines but also of the stronger lines as well in table3, with the hope that these data can be of some use to clarify the nature of the warm extra molecular layers.
- ID:
- ivo://CDS.VizieR/J/ApJS/236/49
- Title:
- CO and 850um obs. of Planck Galactic cold clumps
- Short Name:
- J/ApJS/236/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In order to understand the initial conditions and early evolution of star formation in a wide range of Galactic environments, we carried out an investigation of 64 Planck Galactic cold clumps (PGCCs) in the second quadrant of the Milky Way. Using the ^13^CO and C^18^O J=1-0 lines and 850{mu}m continuum observations, we investigated cloud fragmentation and evolution associated with star formation. We extracted 468 clumps and 117 cores from the ^13^CO line and 850{mu}m continuum maps, respectively. We made use of the Bayesian distance calculator and derived the distances of all 64 PGCCs. We found that in general, the mass-size plane follows a relation of m~r^1.67^. At a given scale, the masses of our objects are around 1/10 of that of typical Galactic massive star-forming regions. Analysis of the clump and core masses, virial parameters, densities, and mass-size relation suggests that the PGCCs in our sample have a low core formation efficiency (~3.0%), and most PGCCs are likely low-mass star-forming candidates. Statistical study indicates that the 850{mu}m cores are more turbulent, more optically thick, and denser than the ^13^CO clumps for star formation candidates, suggesting that the 850{mu}m cores are likely more appropriate future star formation candidates than the ^13^CO clumps.
- ID:
- ivo://CDS.VizieR/J/ApJS/154/673
- Title:
- COBE DIRBE Point Source Catalog
- Short Name:
- J/ApJS/154/673
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the COBE DIRBE Point Source Catalog, an all-sky catalog containing infrared photometry in 10 bands from 1.25 microns to 240 microns for 11788 of the brightest near and mid-infrared point sources in the sky. Since DIRBE had excellent temporal coverage (100-1900 independent measurements per object during the 10 month cryogenic mission), the Catalog also contains information about variability at each wavelength, including amplitudes of variation observed during the mission. Since the DIRBE spatial resolution is relatively poor (0.7{deg}), we have carefully investigated the question of confusion, and have flagged sources with infrared-bright companions within the DIRBE beam. In addition, we filtered the DIRBE light curves for data points affected by companions outside of the main DIRBE beam but within the `sky' portion of the scan. At high Galactic latitudes (|b|>5{deg}), the Catalog contains essentially all of the unconfused sources with flux densities greater than 90, 60, 60, 50, 90, and 165 Jy at 1.25, 2.2, 3.5, 4.9, 12, and 25 microns, respectively, corresponding to magnitude limits of approximately 3.1, 2.6, 1.7, 1.3, -1.3, and -3.5. At longer wavelengths and in the Galactic Plane, the completeness is less certain because of the large DIRBE beam and possible contributions from extended emission. The Catalog also contains the names of the sources in other catalogs, their spectral types, variability types, and whether or not the sources are known OH/IR stars. We discuss a few remarkable objects in the Catalog.
- ID:
- ivo://CDS.VizieR/J/ApJ/686/384
- Title:
- ^12^CO, ^13^CO, C^18^O survey of IRDCs
- Short Name:
- J/ApJ/686/384
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Infrared dark clouds (IRDCs) are extinction features against the Galactic infrared background, mainly in the mid-infrared band. Recently they were proposed to be potential sites of massive star formation. In this work we have made a ^12^CO, ^13^CO, and C^18^O (J=1->0) survey of 61 IRDCs, 52 of which are in the first Galactic quadrant, selected from a catalog given by Simon and coworkers (2006, Cat. J/ApJ/639/227), while the others are in the outer Galaxy, selected by visually inspecting the Midcourse Space Experiment (MSX) images. Detection rates in the three CO lines are 90%, 71%, and 62%, respectively. The distribution of IRDCs in the first Galactic quadrant is consistent with the 5kpc molecular ring picture, while a slight trace of a spiral pattern is also noticeable, and needs to be further examined. The IRDCs have a typical excitation temperature of 10K and typical column density of several 10^22^cm^-2^. Their typical physical size is estimated to be several parsecs using angular sizes from the Simon catalog.
- ID:
- ivo://CDS.VizieR/J/A+AS/93/121
- Title:
- CO emission from a sample of IRAS sources
- Short Name:
- J/A+AS/93/121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The first results from a survey of circumstellar CO(1-0) emission are presented. The sources were selected from the IRAS point source catalog according to the IRAS color criteria described in van der Veen and Habing (1988A&A...194..125V). The sources have good quality fluxes at 12, 25, and 60 microns, flux densities larger than 20Jy at 25{mu}m, and are situated more than 5{deg} away from the Galactic plane. The survey is undertaken to study the relationship between mass loss rates, dust properties, and the evolution along the AGB. The sample consists of 787 sources and contains both oxygen and carbon-rich stars, including Mira variables, OH/IR objects, protoplanetary nebulae, planetary nebulae, and 60-micron excess sources. So far, 519 objects, situated on both the northern and the southern sky, have been observed; 163 sources were found to have circumstellar CO emission, and in 58 of these CO emission has not previously been detected.
- ID:
- ivo://CDS.VizieR/J/ApJS/141/157
- Title:
- CO (J=1-0) data of cold IRAS sources
- Short Name:
- J/ApJS/141/157
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We conducted a large-scale survey for the cold infrared sources along the northern Galactic plane in the CO (J=1-0) line. There are 1912 IRAS sources selected on the basis of their color indices over the 12, 25, and 60{mu}m wave bands and their association with regions of recent star formation. A quick single-point survey was made toward all of the sources, which results in a detection of 1331 sources with significant CO emission above the detection limit of 0.7K, inferring a CO detection rate of 70%. Located over a wide range of the Galactocentric distances, the CO sources show high concentration toward the spiral arms. Among the detected sources, there are 351 sources found to have high-velocity CO wing emission. A search for the latest catalog of high-velocity CO flows (HVFs) from young stellar objects indicates that 289 sources are beyond the present lists of HVFs. These high-velocity wing sources provide us with a comprehensive database for the study of HVFs from young stellar objects. Using the known outflow sources as an effective indicator, we found that the detection rate for high-velocity wings during the quick survey is 62%, moderately sensitive in searching for new outflow sources. The CO detection rate of the IRAS sources, combined with the ratio of high-velocity wing, suggests that 41% of the CO sources are undergoing the HVF phase. In this paper, the CO spectra are presented along with the preliminary statistics of the data.
- ID:
- ivo://CDS.VizieR/II/84
- Title:
- 13-color photometry of 1380 bright stars
- Short Name:
- II/84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The catalogue contains observations of essentially all stars brighter than fifth visual magnitude north of declination -20 degrees and brighter than fourth visual magnitude south of declination -20 degrees, in the 13-color medium-narrow-band photometric system.
- ID:
- ivo://CDS.VizieR/J/A+A/578/A29
- Title:
- Column density maps in 4 IRDCs
- Short Name:
- J/A+A/578/A29
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using ^13^CO 1->0 and ^12^CO 3->2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of ^12^CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N>10^23^cm^-2^ over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated) cloud regions, the PDF constructed from this kind of a clipped image does not represent the (turbulence dominated) low column density regime of the cloud.