- ID:
- ivo://CDS.VizieR/J/AJ/134/214
- Title:
- Infrared study of J-type carbon stars
- Short Name:
- J/AJ/134/214
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We collected 113 J-type carbon stars from the published literature. Observations from 2MASS, IRAS, and ISO show that, except for silicate carbon stars in the J-type carbon star domain, the infrared properties of the other J-type carbon stars are quite similar to those of ordinary carbon stars. The above results imply that the chemical peculiarity of enhanced ^13^C for J-type carbon stars is not reflected in the infrared region. In addition, the possible evolutionary scenario and binarity for J-type carbon stars are also discussed.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/160/201
- Title:
- Infrared transmission spectrum for Kepler-79d
- Short Name:
- J/AJ/160/201
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Extremely low-density planets ("super-puffs") are a small but intriguing subset of the transiting planet population. With masses in the super-Earth range (1-10M{Earth}) and radii akin to those of giant planets (>4R{Earth}), their large envelopes may have been accreted beyond the water snow line and many appear to be susceptible to catastrophic mass loss. Both the presence of water and the importance of mass loss can be explored using transmission spectroscopy. Here, we present new Hubble space telescope WFC3 spectroscopy and updated Kepler transit depth measurements for the super-puff Kepler-79d. We do not detect any molecular absorption features in the 1.1-1.7{mu}m WFC3 bandpass, and the combined Kepler and WFC3 data are consistent with a flat-line model, indicating the presence of aerosols in the atmosphere. We compare the shape of Kepler-79d transmission spectrum to predictions from a microphysical haze model that incorporates an outward particle flux due to ongoing mass loss. We find that photochemical hazes offer an attractive explanation for the observed properties of super-puffs like Kepler-79d, as they simultaneously render the near-infrared spectrum featureless and reduce the inferred envelope mass-loss rate by moving the measured radius (optical depth unity surface during transit) to lower pressures. We revisit the broader question of mass-loss rates for super-puffs and find that the age estimates and mass-loss rates for the majority of super-puffs can be reconciled if hazes move the photosphere from the typically assumed pressure of ~10mbar to ~10{mu}bar.
- ID:
- ivo://CDS.VizieR/J/ApJ/794/125
- Title:
- IN-SYNC. I. APOGEE stellar parameters
- Short Name:
- J/ApJ/794/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J-H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsini from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsini than fainter stars at the same effective temperature.
- ID:
- ivo://CDS.VizieR/J/ApJ/799/136
- Title:
- IN-SYNC. II. Candidate young stars in NGC 1333
- Short Name:
- J/ApJ/799/136
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2Myr) stars in NGC 1333 is 0.92+/-0.12km/s after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5km/s. Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70{mu}G magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse.
- ID:
- ivo://CDS.VizieR/J/ApJ/818/59
- Title:
- IN-SYNC. IV. YSOs in Orion A
- Short Name:
- J/ApJ/818/59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the Sloan Digital Sky Survey APOGEE INfrared Spectroscopy of Young Nebulous Clusters program (IN-SYNC) survey of the Orion A molecular cloud. This survey obtained high-resolution near-infrared spectroscopy of about 2700 young pre-main-sequence stars on a ~6{deg} field of view. We have measured accurate stellar parameters (T_eff_, logg, vsini) and extinctions and placed the sources in the Hertzsprung-Russel diagram (HRD). We have also extracted radial velocities for the kinematic characterization of the population. We compare our measurements with literature results to assess the performance and accuracy of the survey. Source extinction shows evidence for dust grains that are larger than those in the diffuse interstellar medium: we estimate an average R_V_=5.5 in the region. Importantly, we find a clear correlation between HRD inferred ages and spectroscopic surface-gravity-inferred ages and between extinction and disk presence; this strongly suggests a real spread of ages larger than a few Myr. Focusing on the young population around NGC 1980/{iota} Ori, which has previously been suggested to be a separate, foreground, older cluster, we confirm its older (~5Myr) age and low A_V_, but considering that its radial velocity distribution is indistinguishable from Orion A's population, we suggest that NGC 1980 is part of Orion A's star formation activity. Based on their stellar parameters and kinematic properties, we identify 383 new candidate members of Orion A, most of which are diskless sources in areas of the region poorly studied by previous works.
- ID:
- ivo://CDS.VizieR/J/ApJ/869/72
- Title:
- IN-SYNC. VIII. YSOs in NGC 1333, IC 348 and Orion A
- Short Name:
- J/ApJ/869/72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we address two issues related to primordial disk evolution in three clusters (NGC1333, IC348, and OrionA) observed by the INfrared Spectra of Young Nebulous Clusters (IN-SYNC) project. First, in each cluster, averaged over the spread of age, we investigate how disk lifetime is dependent on stellar mass. The general relation in IC348 and OrionA is that primordial disks around intermediate-mass stars (2-5M_{sun}_) evolve faster than those around loss-mass stars (0.1-1M_{sun}_), which is consistent with previous results. However, considering only low-mass stars, we do not find a significant dependence of disk frequency on stellar mass. These results can help to better constrain theories on gas giant planet formation timescales. Second, in the OrionA molecular cloud, in the mass range of 0.35-0.7M_{sun}_, we provide the most robust evidence to date for disk evolution within a single cluster exhibiting modest age spread. By using surface gravity as an age indicator and employing 4.5{mu}m excess as a primordial disk diagnostic, we observe a trend of decreasing disk frequency for older stars. The detection of intra-cluster disk evolution in NGC1333 and IC348 is tentative, since the slight decrease of disk frequency for older stars is a less than 1{sigma} effect.
- ID:
- ivo://CDS.VizieR/J/AJ/140/462
- Title:
- Intermediate-mass star-forming regions
- Short Name:
- J/AJ/140/462
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In an effort to understand the factors that govern the transition from low- to high-mass star formation, for the first time we identify a sample of intermediate-mass star-forming regions (IM SFRs) where stars up to (but not exceeding) ~8M_{sun}_ are being produced. We use IRAS colors and Spitzer Space Telescope mid-IR images, in conjunction with millimeter continuum and ^13^CO maps, to compile a sample of 50 IM SFRs in the inner Galaxy. These are likely to be precursors to Herbig AeBe stars and their associated clusters of low-mass stars.
- ID:
- ivo://CDS.VizieR/J/A+A/349/L69
- Title:
- Interstellar extinction
- Short Name:
- J/A+A/349/L69
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- DENIS observations in the J(1.25{mu}m) and K_S_(2.15{mu}m) bands together with isochrones calculated for the RGB and AGB phase are used to draw an extinction map of the inner Galactic Bulge. The uncertainty in this method is mainly limited by the optical depth of the Bulge itself. A comparison with fields of known extinction shows a very good agreement. We present an extinction map for the inner Galactic Bulge (~20{deg}^2^)
- ID:
- ivo://CDS.VizieR/J/A+AS/132/211
- Title:
- Interstellar SiO sources
- Short Name:
- J/A+AS/132/211
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The results of a survey of SiO emission using the 15-m SEST and the 20-m Onsala telescope are presented in two tables. The sample contains altogether 369 objects including 270 H2O masers, 19 OH masers and 62 IRAS sources with colours typical for ultracompact HII regions. The remaining target sources consist of dust continuum peaks a CS emission peak near H2O masers (12) and Herbig-Haro objects (6). The entries are arranged according to increasing right ascension.
- ID:
- ivo://CDS.VizieR/J/ApJ/841/76
- Title:
- Intrinsic far-IR SED of luminous AGNs
- Short Name:
- J/ApJ/841/76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The range of currently proposed active galactic nucleus (AGN) far-infrared templates results in uncertainties in retrieving host galaxy information from infrared observations and also undermines constraints on the outer part of the AGN torus. We discuss how to test and reconcile these templates. Physically, the fraction of the intrinsic AGN IR-processed luminosity compared with that from the central engine should be consistent with the dust-covering factor. In addition, besides reproducing the composite spectral energy distributions (SEDs) of quasars, a correct AGN IR template combined with an accurate library of star-forming galaxy templates should be able to reproduce the IR properties of the host galaxies, such as the luminosity-dependent SED shapes and aromatic feature strengths. We develop tests based on these expected behaviors and find that the shape of the AGN intrinsic far-IR emission drops off rapidly starting at ~20{mu}m and can be matched by an Elvis+ (1994, J/ApJS/95/1)-like template with a minor modification. Despite the variations in the near- to mid-IR bands, AGNs in quasars and Seyfert galaxies have remarkably similar intrinsic far-IR SEDs at {lambda}~20-100{mu}m, suggesting a similar emission character of the outermost region of the circumnuclear torus. The variations of the intrinsic AGN IR SEDs among the type-1 quasar population can be explained by the changing relative strengths of four major dust components with similar characteristic temperatures, and there is evidence for compact AGN-heated dusty structures at sub-kiloparsec scales in the far-IR.