- ID:
- ivo://CDS.VizieR/J/PASJ/71/1
- Title:
- AKARI Near Infrared Asteroid Spectral Catalog V1
- Short Name:
- J/PASJ/71/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Knowledge of water in the solar system is important for the understanding of a wide range of evolutionary processes and the thermal history of the solar system. To explore the existence of water in the solar system, it is indispensable to investigate hydrated minerals and/or water ice on asteroids. These water-related materials show absorption features in the 3um band (wavelengths from 2.7 to 3.1um). We conducted a spectroscopic survey of asteroids in the 3um band using the Infrared Camera (IRC) on board the Japanese infrared satellite AKARI. In the warm mission period of AKARI, 147 pointed observations were performed for 66 asteroids in the grism mode for wavelengths from 2.5 to 5um. According to these observations, most C-complex asteroids have clear absorption features (>10% with respect to the continuum) related to hydrated minerals at a peak wavelength of approximately 2.75um, while S-complex asteroids have no significant features in this wavelength range. The present data are released to the public as the Asteroid Catalog using AKARI Spectroscopic Observations (AcuA-spec).
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/537/A24
- Title:
- AKARI NEP-Deep field mid-IR source catalogue
- Short Name:
- J/A+A/537/A24
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new catalogue of mid-IR sources using the AKARI NEP-Deep survey. The InfraRed Camera (IRC) onboard AKARI has a comprehensive mid-IR wavelength coverage with 9 photometric bands at 2-24 micron. We designed the catalogue to include most of sources detected in 7, 9, 11, 15, and 18 micron bands, and found 7284 sources in a 0.67 square degree area.
- ID:
- ivo://CDS.VizieR/J/A+A/559/A132
- Title:
- AKARI NEP Deep Survey revised catalog
- Short Name:
- J/A+A/559/A132
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This is the revised catalogue of the AKARI North Ecliptic Pole Deep survey. The survey was carried out with the InfraRed Camera (IRC) onboard AKARI which has a comprehensive mid-IR wavelength coverage in nine photometric bands at 2-24 micron. For mid-IR source extraction we used a detection image while for near-IR source detection we used optical to near-IR ground-based catalogue which is based on CFHT/MegaCam z', CFHT/WIRCam Ks and Subaru/Scam z' band detection. Here we present an AKARI source with the identification from the ground-based catalogue. For objects with multiple counterparts, all of these were listed in the catalogue with an upper limit for the AKARI flux. The magnitudes are given in the AB system.
- ID:
- ivo://CDS.VizieR/J/MNRAS/444/846
- Title:
- AKARI NEP Survey sources at 18um
- Short Name:
- J/MNRAS/444/846
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first galaxy counts at 18{mu}m using the Japanese AKARI satellite's survey at the North Ecliptic Pole (NEP), produced from the images from the NEP-Deep and NEP-Wide surveys covering 0.6 and 5.8deg^2^, respectively. We describe a procedure using a point source filtering algorithm to remove background structure and a minimum variance method for our source extraction and photometry that delivers the optimum signal to noise for our extracted sources, confirming this by comparison with standard photometry methods. The final source counts are complete and reliable over three orders of magnitude in flux density, resulting in sensitivities (80 per cent completeness) of 0.15 and 0.3mJy for the NEP-Deep and NEP-Wide surveys, respectively, a factor of 1.3 deeper than previous catalogues constructed from this field. The differential source counts exhibit a characteristic upturn from Euclidean expectations at around a milliJansky and a corresponding evolutionary bump between 0.2-0.4mJy consistent with previous mid-infrared surveys with ISO and Spitzer at 15 and 24{mu}m. We compare our results with galaxy evolution models confirming the striking divergence from the non-evolving scenario. The models and observations are in broad agreement implying that the source counts are consistent with a strongly evolving population of luminous infrared galaxies at redshifts higher than unity. Integrating our source counts down to the limit of the NEP survey at the 150{mu}Jy level we calculate that AKARI has resolved approximately 55 per cent of the 18{mu}m cosmic infrared background relative to the predictions of contemporary source count models.
- ID:
- ivo://CDS.VizieR/J/ApJ/784/53
- Title:
- AKARI NIR spectral atlas of Galactic HII regions
- Short Name:
- J/ApJ/784/53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a large collection of near-infrared spectra (2.5-5.4 {mu}m) of Galactic HII regions and HII region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 {mu}m features, most spectra show a relatively weak emission feature at 5.22 {mu}m with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 {mu}m band (previously reported).
- ID:
- ivo://CDS.VizieR/J/ApJS/216/17
- Title:
- AKARI 2.5-5um spectra of nearby Type-1 AGNs
- Short Name:
- J/ApJS/216/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 2.5-5.0{mu}m spectra of 83 nearby (0.002<z<0.48) and bright (K<14mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0{mu}m spectral region contains emission lines such as Br{beta} (2.63{mu}m), Br{alpha} (4.05{mu}m), and polycyclic aromatic hydrocarbons (3.3{mu}m), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ~1100K and ~220K, respectively, rather than the commonly cited hot dust temperature of 1500K.
- ID:
- ivo://irsa.ipac/WISE/Catalog/AllWISE/Metadata
- Title:
- AllWISE Atlas Metadata Table
- Short Name:
- AllWISE Metadata
- Date:
- 01 Oct 2018 20:27:16
- Publisher:
- NASA/IPAC Infrared Science Archive
- Description:
- The AllWISE program builds upon the work of the successful Wide-field Infrared Survey Explorer mission (WISE; Wright et al. 2010) by combining data from the WISE cryogenic and NEOWISE (Mainzer et al. 2011 ApJ, 731, 53) post-cryogenic survey phases to form the most comprehensive view of the full mid-infrared sky currently available. By combining the data from two complete sky coverage epochs using an advanced data processing system, AllWISE has generated new products that have enhanced photometric sensitivity and accuracy, and improved astrometric precision compared to the 2012 WISE All-Sky Data Release. Exploiting the 6 to 12 month baseline between the WISE sky coverage epochs enables AllWISE to measure source motions for the first time, and to compute improved flux variability statistics. The AllWISE Atlas Metadata Table contains brief descriptions of all metadata information that is relevant to the production of the Atlas images and Source Catalog. The table contains the (RA, DEC) of the center of the Tile. Much of the information in this table is processing-specific and may not be of interest to general users (e.g., flags indicating whether frames have been processed successfully or not, and the date and time of the start of the pipeline processing, etc.). The metadata table also contains some characterization and derived statistics of the coadd image Tile, basic photometric parameters used for photometry and derived statistics for extracted sources and artifacts.
- ID:
- ivo://CDS.VizieR/J/MNRAS/473/4937
- Title:
- AllWISE ctp to ROSAT/2RXS & XMMSLEW2 catalogs
- Short Name:
- J/MNRAS/473/4937
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We release the AllWISE counterparts and Gaia matches to 106573 and 17665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b|>15{deg}. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g. colours, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a Wide-field Infrared Survey Explorer (WISE) colour-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of 94.7 per cent (2RXS) and 97.4 per cent (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96 per cent and 99 per cent with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool. See for all the options the Nway manual at https://github.com/JohannesBuchner/nway/raw/master/doc/nway-manual.pdf
- ID:
- ivo://CDS.VizieR/II/328
- Title:
- AllWISE Data Release
- Short Name:
- II/328
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Wide-field Infrared Survey Explorer (WISE; see Wright et al. 2010AJ....140.1868W) is a NASA Medium Class Explorer mission that conducted a digital imaging survey of the entire sky in the 3.4, 4.6, 12 and 22um mid-infrared bandpasses (hereafter W1, W2, W3 and W4). The AllWISE program extends the work of the successful Wide-field Infrared Survey Explorer mission by combining data from the cryogenic and post-cryogenic survey phases to form the most comprehensive view of the mid-infrared sky currently available. AllWISE has produced a new Source Catalog and Image Atlas with enhanced sensitivity and accuracy compared with earlier WISE data releases. Advanced data processing for AllWISE exploits the two complete sky coverages to measure source motions for each Catalog source, and to compile a massive database of light curves for those objects.
- ID:
- ivo://irsa.ipac/WISE/Catalog/AllWISE/Multiepoch
- Title:
- AllWISE Multiepoch Photometry Table
- Short Name:
- AllWISE MEP
- Date:
- 01 Oct 2018 20:27:16
- Publisher:
- NASA/IPAC Infrared Science Archive
- Description:
- The AllWISE program builds upon the work of the successful Wide-field Infrared Survey Explorer mission (WISE; Wright et al. 2010) by combining data from the WISE cryogenic and NEOWISE (Mainzer et al. 2011 ApJ, 731, 53) post-cryogenic survey phases to form the most comprehensive view of the full mid-infrared sky currently available. By combining the data from two complete sky coverage epochs using an advanced data processing system, AllWISE has generated new products that have enhanced photometric sensitivity and accuracy, and improved astrometric precision compared to the 2012 WISE All-Sky Data Release. Exploiting the 6 to 12 month baseline between the WISE sky coverage epochs enables AllWISE to measure source motions for the first time, and to compute improved flux variability statistics. The AllWISE Multiepoch Photometry (MEP) Database is a compendium of time-tagged fluxes measured on the individual Single-exposure image sets forced at the position of each deep source extraction that is in the AllWISE Source Catalog and Reject Table.