- ID:
- ivo://CDS.VizieR/J/ApJ/873/65
- Title:
- Keck/NIRC2 obs. of the Galactic Center
- Short Name:
- J/ApJ/873/65
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Precision measurements of the stars in short-period orbits around the supermassive black hole at the Galactic Center are now being used to constrain general relativistic effects, such as the gravitational redshift and periapse precession. One of the largest systematic uncertainties in the measured orbits has been errors in the astrometric reference frame, which is derived from seven infrared-bright stars associated with SiO masers that have extremely accurate radio positions, measured in the Sgr A*-rest frame. We have improved the astrometric reference frame within 14" of the Galactic Center by a factor of 2.5 in position and a factor of 5 in proper motion. In the new reference frame, Sgr A* is localized to within a position of 0.645mas and proper motion of 0.03mas/yr. We have removed a substantial rotation (2.25{deg} per decade), that was present in the previous less-accurate reference frame used to measure stellar orbits in the field. With our improved methods and continued monitoring of the masers, we predict that orbital precession predicted by general relativity will become detectable in the next ~5yr.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/751/132
- Title:
- Keck observations of the Arches cluster
- Short Name:
- J/ApJ/751/132
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the first detection of the intrinsic velocity dispersion of the Arches cluster - a young (~2Myr), massive (10^4^M_{sun}_) starburst cluster located only 26pc in projection from the Galactic center. This was accomplished using proper motion measurements within the central 10"x10" of the cluster, obtained with the laser guide star adaptive optics system at Keck Observatory over a three-year time baseline (2006-2009). This uniform data set results in proper motion measurements that are improved by a factor ~5 over previous measurements from heterogeneous instruments. By careful, simultaneous accounting of the cluster and field contaminant distributions as well as the possible sources of measurement uncertainties, we estimate the internal velocity dispersion to be 0.15+/-0.01mas/yr, which corresponds to 5.4+/-0.4km/s at a distance of 8.4kpc. Collateral benefits of our data and analysis include: (1) cluster membership probabilities, which may be used to extract a clean-cluster sample for future photometric work; (2) a refined estimate of the bulk motion of the Arches cluster with respect to the field, which we find to be 172+/-15km/s, which is slightly slower than suggested by previous measurements using one epoch each with the Very Large Telescope and the Keck telescope; and (3) a velocity dispersion estimate for the field itself, which is likely dominated by the inner Galactic bulge and the nuclear disk.
- ID:
- ivo://CDS.VizieR/IV/34
- Title:
- K2 Ecliptic Plane Input Catalog (EPIC)
- Short Name:
- IV/34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The K2 Mission (Howell+, 2014PASP..126..398H) uses the Kepler spacecraft to obtain high-precision photometry over ~80 day campaigns in the ecliptic plane. The Ecliptic Plane Input Catalog (EPIC) provides coordinates, photometry, and kinematics based on a federation of all-sky catalogs to support target selection and target management for the K2 mission.
- ID:
- ivo://CDS.VizieR/J/AJ/143/4
- Title:
- Kepler cycle 1 observations of low-mass stars
- Short Name:
- J/AJ/143/4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have analyzed Kepler light curves for 849 stars with Teff<=5200K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 days and two of which are probably W UMa variables. In addition, we identify a candidate "warm Jupiter" exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with Teff<=5200K are variable. The rotation periods we derive for the periodic variables span the range 0.31days<=Prot<=126.5days. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun.
- ID:
- ivo://CDS.VizieR/J/AJ/153/71
- Title:
- Kepler follow-up observation program. I. Imaging
- Short Name:
- J/AJ/153/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field. Part of the data were obtained under the Kepler imaging follow-up observation program over six years (2009-2015). Almost 90% of stars that are hosts to planet candidates or confirmed planets were observed. We combine measurements of companions to KOI host stars from different bands to create a comprehensive catalog of projected separations, position angles, and magnitude differences for all detected companion stars (some of which may not be bound). Our compilation includes 2297 companions around 1903 primary stars. From high-resolution imaging, we find that ~10% (~30%) of the observed stars have at least one companion detected within 1'' (4''). The true fraction of systems with close (<~4'') companions is larger than the observed one due to the limited sensitivities of the imaging data. We derive correction factors for planet radii caused by the dilution of the transit depth: assuming that planets orbit the primary stars or the brightest companion stars, the average correction factors are 1.06 and 3.09, respectively. The true effect of transit dilution lies in between these two cases and varies with each system. Applying these factors to planet radii decreases the number of KOI planets with radii smaller than 2R_{Earth}_ by ~2%-23% and thus affects planet occurrence rates. This effect will also be important for the yield of small planets from future transit missions such as TESS.
- ID:
- ivo://CDS.VizieR/J/ApJ/813/130
- Title:
- Kepler multiple transiting planet systems
- Short Name:
- J/ApJ/813/130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Kepler mission provides a wealth of multiple transiting planet systems (MTPSs). The formation and evolution of multi-planet systems are likely to be influenced by companion stars given the abundance of multiple stellar systems. We study the influence of stellar companions by measuring the stellar multiplicity rate of MTPSs. We select 138 bright (K_P_<13.5) Kepler MTPSs and search for stellar companions with adaptive optics (AO) imaging data and archival radial velocity data. We obtain new AO images for 73 MTPSs. Other MTPSs in the sample have archival AO imaging data from the Kepler Community Follow-up Observation Program. From these imaging data, we detect 42 stellar companions around 35 host stars. For stellar separation 1 AU<a<100 AU, the stellar multiplicity rate is 5.2+/-5.0% for MTPSs, which is 2.8{sigma} lower than 21.1+/-2.8% for the control sample, i.e., the field stars in the solar neighborhood. We identify two origins for the deficit of stellar companions within 100 AU of MTPSs: (1) a suppressive planet formation and (2) the disruption of orbital coplanarity due to stellar companions. To distinguish between the two origins, we compare the stellar multiplicity rates of MTPSs and single transiting planet systems (STPSs). However, current data are not sufficient for this purpose. For 100 AU<a<2000 AU, the stellar multiplicity rates are comparable for MTPSs (8.0+/-4.0%), STPSs (6.4+/-5.8%), and the control sample (12.5+/-2.8%).
- ID:
- ivo://CDS.VizieR/J/ApJ/871/174
- Title:
- Kepler rapid rotators and Ks-band excesses
- Short Name:
- J/ApJ/871/174
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Tens of thousands of rotation periods have been measured in the Kepler fields, including a substantial fraction of rapid rotators. We use Gaia parallaxes to distinguish photometric binaries (PBs) from single stars on the unevolved lower main sequence, and compare their distribution of rotation properties to those of single stars both with and without Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectroscopic characterization. We find that 59% of stars with 1.5day<P<7day lie 0.3mag above the main sequence, compared with 28% of the full rotation sample. The fraction of stars in the same period range is 1.7{+/-}0.1% of the total sample analyzed for rotation periods. Both the PB fraction and the fraction of rapid rotators are consistent with a population of non-eclipsing short-period binaries inferred from Kepler eclipsing binary data after correcting for inclination. This suggests that the rapid rotators are dominated by tidally synchronized binaries rather than single stars obeying traditional angular momentum evolution. We caution against interpreting rapid rotation in the Kepler field as a signature of youth. Following up on this new sample of 217 candidate tidally synchronized binaries will help further understand tidal processes in stars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/426/91
- Title:
- Kepler stars with infrared excess
- Short Name:
- J/MNRAS/426/91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe a search for infrared excess emission from dusty circumstellar material around 180000 stars observed by the Kepler and Wide-field Infrared Survey Explorer missions. This study is motivated by (i) the potential to find bright warm discs around planet host stars, (ii) a need to characterize the distribution of rare warm discs and (iii) the possible identification of candidates for discovering transiting dust concentrations. We find about 8000 stars that have excess emission, mostly at 12um.
- ID:
- ivo://CDS.VizieR/J/ApJ/540/236
- Title:
- KH photometry of Orion Nebula Cluster
- Short Name:
- J/ApJ/540/236
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a 0.5"-0.9" FWHM imaging survey at K (2.2{mu}m) and H (1.6{mu}m) covering ~ 5.1'x5.1' centered on {theta}^1^C Ori, the most massive star in the Orion Nebula Cluster (ONC). At the age and distance of this cluster, and in the absence of extinction, the hydrogen-burning limit (0.08M_{sun}_) occurs at K~13.5mag, while an object of mass 0.02M_{sun}_ has K~16.2mag. Our photometry is complete for source detection at the 7{sigma} level to K~17.5mag and thus is sensitive to objects as low-mass as 0.02M_{sun}_ seen through visual extinction values as high as 10mag. We use the observed magnitudes, colors, and star counts to constrain the shape of the inner ONC stellar mass function across the hydrogen-burning limit. After determining the stellar age and near-infrared excess properties of the optically visible stars in this same inner ONC region, we present a new technique that incorporates these distributions when extracting the mass function from the observed density of stars in the K-(H-K) diagram. We find that our data are inconsistent with a mass function that rises across the stellar/substellar boundary. Instead, we find that the most likely form of the inner ONC mass function is one that rises to a peak around 0.15M_{sun}_, and then declines across the hydrogen-burning limit with slope N(log M){prop.to}M^0.57^. We emphasize that our conclusions apply to the inner 0.71pc x 0.71pc of the ONC only; they may not apply to the ONC as a whole where some evidence for general mass segregation has been found.
- ID:
- ivo://CDS.VizieR/J/AJ/142/112
- Title:
- KIC photometric calibration
- Short Name:
- J/AJ/142/112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe the photometric calibration and stellar classification methods used by the Stellar Classification Project to produce the Kepler Input Catalog (KIC). The KIC is a catalog containing photometric and physical data for sources in the Kepler mission field of view; it is used by the mission to select optimal targets. Four of the visible-light (g, r, i, z) magnitudes used in the KIC are tied to Sloan Digital Sky Survey magnitudes; the fifth (D51) is an AB magnitude calibrated to be consistent with Castelli & Kurucz (CK) model atmosphere fluxes. We derived atmospheric extinction corrections from hourly observations of secondary standard fields within the Kepler field of view.