- ID:
- ivo://CDS.VizieR/J/A+A/557/A29
- Title:
- Young stellar clusters in the Rosette
- Short Name:
- J/A+A/557/A29
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Rosette complex is a well studied region of the galactic plane which presents the apparent characteristics of a triggered star forming region. This is however still debated as no strong evidence corroborates this statement. We focused on characterizing the young stellar population in the Rosette to improve our understanding of the processes that regulate the star formation in this region. We propose an original method relying on the joint analysis of the star color and density in the near-infrared. It yielded the identification of 13 clusters, 2 of them being new discoveries. Based on their spectral index from UKIDSS K-band to WISE W3-band, we identified 535 YSO candidates within these cluster boundaries.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/762/88
- Title:
- Young stellar kinematic group candidate members
- Short Name:
- J/ApJ/762/88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the {beta} Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as H{alpha} and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in {beta} Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for {beta} Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708{AA} equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the {beta} Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.
- ID:
- ivo://CDS.VizieR/J/AJ/159/200
- Title:
- Young stellar objects in Lupus star-forming region
- Short Name:
- J/AJ/159/200
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The identification and characterization of stellar members within a star-forming region are critical to many aspects of star formation, including formalization of the initial mass function, circumstellar disk evolution, and star formation history. Previous surveys of the Lupus star-forming region have identified members through infrared excess and accretion signatures. We use machine learning to identify new candidate members of Lupus based on surveys from two space-based observatories: ESA's Gaia and NASA's Spitzer. Astrometric measurements from Gaia's Data Release 2 and astrometric and photometric data from the Infrared Array Camera on the Spitzer Space Telescope, as well as from other surveys, are compiled into a catalog for the random forest (RF) classifier. The RF classifiers are tested to find the best features, membership list, non-membership identification scheme, imputation method, training set class weighting, and method of dealing with class imbalance within the data. We list 27 candidate members of the Lupus star-forming region for spectroscopic follow-up. Most of the candidates lie in Clouds V and VI, where only one confirmed member of Lupus was previously known. These clouds likely represent a slightly older population of star formation.
- ID:
- ivo://CDS.VizieR/J/MNRAS/419/1887
- Title:
- Young stellar objects in NGC 6823
- Short Name:
- J/MNRAS/419/1887
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 6823 is a young open cluster that lies at a distance of ~2kpc in the Vulpecula OB1 association. Previous studies using CCD photometry and spectroscopy have identified a Trapezium system of bright O- and B-type stars at its centre, along with several massive O-, B- and A-type stars in the cluster. We present optical VRI and near-infrared JHK photometric observations, complemented with Spitzer/Infrared Array Camera archival data, with an aim to identify the young low-mass population and the disc candidates in this region. Our survey reaches down to I~22mag and K_s_~18mag. There is significant differential reddening within the cluster. We find a bimodal distribution for A_V_, with a peak at ~3mag and a broader peak at ~10mag. We have classified the sources based on the [4.5]-[8] colour, which is least affected by extinction. We find a ~20 per cent fraction of Class I/Class II young stellar objects (YSOs) in the cluster, while a large 80 per cent fraction of the sources have a Class III classification. We have made use of the INT Photometric H{alpha} Survey (IPHAS) in order to probe the strength in H{alpha} emission for this large population of Class III sources. Nearly all of the Class III objects have photospheric (r'-H{alpha}) colours, implying an absence of H{alpha} in emission. This large population of Class III sources is thus likely the extinct field star population rather than the discless YSOs in the cluster. There is a higher concentration of the Class I/II systems in the eastern region of the cluster and close to the central Trapezium. The western part of the cluster mostly contains Class III/field stars and seems devoid of disc sources. We find evidence of a pre-main-sequence population in NGC 6823, in addition to an upper main-sequence population. The pre-main-sequence population mainly consists of young disc sources with ages between ~1 and 5Myr, and at lower masses of ~0.1-0.4M_{sun}_. There may be a possible mass-dependent age spread in the cluster, with the older stars being more massive than the younger ones. The presence of young disc sources in NGC 6823 indicates similar star formation properties in the outer regions of the Galaxy as observed for young clusters in the solar neighbourhood.
- ID:
- ivo://CDS.VizieR/J/ApJ/575/354
- Title:
- Young stellar objects in the NGC 1333
- Short Name:
- J/ApJ/575/354
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 1333, a highly active star formation region within the Perseus molecular cloud complex, has been observed with the ACIS-I detector on board the Chandra X-Ray Observatory. In our image with a sensitivity limit of ~19^28^erg/s, we detect 127 X-ray sources, most with subarcsecond positional accuracy. While 32 of these sources appear to be foreground stars and extragalactic background, 95 X-ray sources are Identified with known cluster members.
- ID:
- ivo://CDS.VizieR/J/ApJ/848/97
- Title:
- Young stellar variables with KELT for K2. I.
- Short Name:
- J/ApJ/848/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One of the most well-studied young stellar associations, Taurus-Auriga, was observed by the extended Kepler mission, K2, in the spring of 2017. K2 Campaign 13 (C13) is a unique opportunity to study many stars in this young association at high photometric precision and cadence. Using observations from the Kilodegree Extremely Little Telescope (KELT) survey, we identify "dippers," aperiodic and periodic variables among K2 C13 target stars. This release of the KELT data provides the community with long-time baseline observations to assist in the understanding of the more exotic variables in the association. Transient-like phenomena on timescales of months to years are known characteristics in the light curves of young stellar objects, making contextual pre- and post-K2 observations critical to understanding their underlying processes. We are providing a comprehensive set of the KELT light curves for known Taurus-Auriga stars in K2 C13. The combined data sets from K2 and KELT should permit a broad array of investigations related to star formation, stellar variability, and protoplanetary environments.
- ID:
- ivo://CDS.VizieR/J/ApJ/878/7
- Title:
- 2yr obs. of JHK variability of stars in Tr37
- Short Name:
- J/ApJ/878/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have monitored nearly a square degree in IC 1396A/Tr 37 over 21 epochs extending over 2014-2016 for sources variable in the JHK bands. In our data, 65%+/-8% of previously identified cluster members show variations, compared with <=0.3% of field stars. We identify 119 members of Tr 37 on the basis of variability, forming an unbiased sample down to the brown dwarf regime. The K-band luminosity function in Tr 37 is similar to that of IC 348 but shifted to somewhat brighter values, implying that the K- and M-type members of Tr 37 are younger than those in IC 348. We introduce methods to classify the causes of variability, based on behavior in the color-color and color-magnitude diagrams. Accretion hot spots cause larger variations at J than at K with substantial scatter in the diagrams; there are at least a dozen, with the most active resembling EXors. Eleven sources are probably dominated by intervention of dust clumps in their circumstellar disks, with color behavior indicating the presence of grains larger than for interstellar dust, presumably due to grain growth in their disks. Thirteen sources have larger variations at K than at J or H. For 11 of them, the temperature fitted to the variable component is very close to 2000K, suggesting that the changes in output are caused by turbulence at the inner rim of the circumstellar disk exposing previously protected populations of grains.
- ID:
- ivo://CDS.VizieR/J/ApJ/837/30
- Title:
- 25yrs monitoring of stellar orbits in the GC
- Short Name:
- J/ApJ/837/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using 25 years of data from uninterrupted monitoring of stellar orbits in the Galactic Center (GC), we present an update of the main results from this unique data set: a measurement of mass and distance to SgrA*. Our progress is not only due to the eight-year increase in time base, but also to the improved definition of the coordinate system. The star S2 continues to yield the best constraints on the mass of and distance to Sgr A*; the statistical errors of 0.13x10^6^M_{sun}_ and 0.12kpc have halved compared to the previous study. The S2 orbit fit is robust and does not need any prior information. Using coordinate system priors, the star S1 also yields tight constraints on mass and distance. For a combined orbit fit, we use 17 stars, which yields our current best estimates for mass and distance: M=4.28+/-0.10|_stat._+/-0.21|_sys_x10^6^M_{sun}_ and R_0_=8.32+/-0.07|_stat._+/-0.14|_sys_kpc. These numbers are in agreement with the recent determination of R_0_ from the statistical cluster parallax. The positions of the mass, of the near-infrared flares from Sgr A*, and of the radio source Sgr A* agree to within 1mas. In total, we have determined orbits for 40 stars so far, a sample which consists of 32 stars with randomly oriented orbits and a thermal eccentricity distribution, plus eight stars that we can explicitly show are members of the clockwise disk of young stars, and which have lower-eccentricity orbits.
- ID:
- ivo://CDS.VizieR/J/A+A/647/A116
- Title:
- YSO candidate catalog from ANN
- Short Name:
- J/A+A/647/A116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Observed young stellar objects (YSOs) are used to study star formation and characterize star-forming regions. For this purpose, YSO candidate catalogs are compiled from various surveys, especially in the infrared (IR), and simple selection schemes in color-magnitude diagrams (CMDs) are often used to identify and classify YSOs. We propose a methodology for YSO classification through machine learning (ML) using Spitzer IR data. We detail our approach in order to ensure reproducibility and provide an in-depth example on how to efficiently apply ML to an astrophysical classification. We used feed forward artificial neural networks (ANNs) that use the four IRAC bands (3.6, 4.5, 5.8, and 8 micron) and the 24 micron MIPS band from Spitzer to classify point source objects into CI and CII YSO candidates or as contaminants. We focused on nearby (~1kpc) star-forming regions including Orion and NGC 2264, and assessed the generalization capacity of our network from one region to another. We found that ANNs can be efficiently applied to YSO classification with a contained number of neurons (~25). Knowledge gathered on one star-forming region has shown to be partly efficient for prediction in new regions. The best generalization capacity was achieved using a combination of several star-forming regions to train the network. Carefully rebalancing the training proportions was necessary to achieve good results. We observed that the predicted YSOs are mainly contaminated by under-constrained rare subclasses like Shocks and polycyclic aromatic hydrocarbons (PAHs), or by the vastly dominant other kinds of stars (mostly on the main sequence). We achieved above 90% and 97% recovery rate for CI and CII YSOs, respectively, with a precision above 80% and 90% for our most general results. We took advantage of the great flexibility of ANNs to define, for each object, an effective membership probability to each output class. Using a threshold in this probability was found to efficiently improve the classification results at a reasonable cost of object exclusion. With this additional selection, we reached 90% and 97% precision on CI and CII YSOs, respectively, for more than half of them. Our catalog of YSO candidates in Orion (365 CI, 2381 CII) and NGC 2264 (101 CI, 469 CII) predicted by our final ANN, along with the class membership probability for each object, is publicly available at the CDS. Compared to usual CMD selection schemes, ANNs provide a possibility to quantitatively study the properties and quality of the classification. Although some further improvement may be achieved by using more powerful ML methods, we established that the result quality depends mostly on the training set construction. Improvements in YSO identification with IR surveys using ML would require larger and more reliable training catalogs, either by taking advantage of current and future surveys from various facilities like VLA, ALMA, or Chandra, or by synthesizing such catalogs from simulations.
- ID:
- ivo://CDS.VizieR/J/ApJS/240/26
- Title:
- YSO candidates in Canis Major OB1 association
- Short Name:
- J/ApJS/240/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study a very young star-forming region in the outer Galaxy that is the most concentrated source of outflows in the Spitzer Space Telescope GLIMPSE360 survey. This region, dubbed CMa-l224, is located in the Canis Major OB1 association. CMa-l224 is relatively faint in the mid-infrared, but it shines brightly at the far-infrared wavelengths as revealed by the Herschel Space Observatory data from the Hi-GAL survey. Using the 3.6 and 4.5{mu}m data from the Spitzer/GLIMPSE360 survey, combined with the JHKs Two Micron All Sky Survey (2MASS) and the 70-500{mu}m Herschel/Hi-GAL data, we develop young stellar object (YSO) selection criteria based on color-color cuts and fitting of the YSO candidates' spectral energy distributions with YSO 2D radiative transfer models. We identify 293 YSO candidates and estimate physical parameters for 210 sources well fit with YSO models. We select an additional 47 sources with GLIMPSE360-only photometry as "possible YSO candidates." The vast majority of these sources are associated with high H2 column density regions and are good targets for follow-up studies. The distribution of YSO candidates at different evolutionary stages with respect to Herschel filaments supports the idea that stars are formed in the filaments and become more dispersed with time. Both the supernova-induced and spontaneous star formation scenarios are plausible in the environmental context of CMa-l224. However, our results indicate that a spontaneous gravitational collapse of filaments is a more likely scenario. The methods developed for CMa-l224 can be used for larger regions in the Galactic plane where the same set of photometry is available.