The Cepheus B (Cep B) molecular cloud and a portion of the nearby Cep OB3b OB association, one of the most active regions of star formation within 1kpc, have been observed with the Infrared Array Camera detector on board the Spitzer Space Telescope. The goals are to study protoplanetary disk evolution and processes of sequential triggered star formation in the region. Out of ~400 pre-main-sequence (PMS) stars selected with an earlier Chandra X-ray Observatory observation, ~95% are identified with mid-infrared sources and most of these are classified as diskless or disk-bearing stars. The discovery of the additional >200 IR-excess low-mass members gives a combined Chandra+Spitzer PMS sample that is almost complete down to 0.5M_{sun}_ outside of the cloud, and somewhat above 1M_{sun}_ in the cloud.
We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85deg^2^ field including the Corona Australis (CrA) star-forming region. At a distance of 130pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Using the Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include sources in the well-studied Coronet cluster as well as sources distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs retrieved from the literature are also added to the list, and a total of 116 candidate YSOs in CrA are compiled. A clustering analysis was also performed, finding that the main cluster core, consisting of 68 members, is elongated (having an aspect ratio of 2.36), with a circular radius of 0.59pc and mean surface density of 150pc^-2^. In addition, we analyze outflows and jets in CrA by means of new CO and H2 data. We present 1.3mm interferometric continuum observations made with the Submillimeter Array (SMA) covering R CrA, IRS 5, IRS 7, and IRAS 18595-3712 (IRAS 32).
We present the design and implementation of a medium-band near-IR filter tailored for detecting low-mass stars and brown dwarfs from the summit of Maunakea. The W-band filter is centered at 1.45{mu}m with a bandpass width of 6%, designed to measure the depth of the H_2_O water absorption prominent in objects with spectral types of M6 and later. When combined with standard J and H photometry, the W-band filter is designed to determine spectral types to ~=1.4 subtypes for late-M and L dwarfs, largely independent of surface gravity and reddening. This filter's primary application is completing the census of young substellar objects in star-forming regions, using W-band selection to greatly reduce contamination by reddened background stars that impede broad-band imaging surveys. We deployed the filter on the UH 88 inch telescope to survey ~3 degree^2^ of the NGC 1333, IC 348, and {rho} Ophiuchus star-forming regions. Our spectroscopic followup of W-band selected candidates resulted in the confirmation of 48 ultracool dwarfs with a success rate of 89%, demonstrating the efficacy of this new filter and selection method.
The Wide-field Infrared Survey Explorer has uncovered a population of young stellar objects (YSOs) in the Western Circinus molecular cloud. Images show the YSOs to be clustered into two main groups that are coincident with dark filamentary structure in the nebulosity. Analysis of photometry shows numerous Class I and II objects. The locations of several of these objects are found to correspond to known dense cores and CO outflows. Class I objects tend to be concentrated in dense aggregates, and Class II objects more evenly distributed throughout the region.
Bright-rimmed clouds (BRCs), illuminated and shaped by nearby OB stars, are potential sites of recent/ongoing star formation. Here we present an optical and infrared photometric study of three BRCs: BRC 5, BRC 7 and BRC 39 to obtain a census of the young stellar population, thereby inferring the star formation scenario, in these regions. In each BRC, the Class I sources are found to be located mostly near the bright rim or inside the cloud, whereas the Class II sources are preferentially outside, with younger sources closer to the rim. This provides strong support to sequential star formation triggered by radiation-driven implosion due to the ultraviolet radiation. Moreover, each BRC contains a small group of young stars being revealed at its head, as the next-generation stars. In particular, the young stars at the heads of BRC 5 and BRC 7 are found to be intermediate-/high-mass stars, which, under proper conditions, may themselves trigger further star birth, thereby propagating star formation out to long distances.
X-rays from very young stars are powerful probes to investigate the mechanisms at work in the very first stages of the star formation and the origin of X-ray emission in very young stars. We present results from a 500ks long observation of the rho Ophiuchi cloud with a XMM-Newton large program named DROXO, aiming at studying the X-ray emission of deeply embedded young stellar objects (YSOs).
We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M_*_/M_{sun}_){approx}-0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.
We introduce a new set of selection criteria for the identification of infrared bright young stellar object (YSO) candidates and apply them to nine HII regions in the Large Magellanic Cloud (LMC), focusing particularly on lower mass candidates missed by most surveys. Data are from the Spitzer Space Telescope legacy program SAGE (Surveying the Agents of Galaxy Evolution; Meixner et al. 2006, Cat. J/AJ/132/2268, see also II/305), combined with optical photometry from the Magellanic Clouds Photometric Survey (MCPS; Zaritsky et al. 1997AJ....114.1002Z) and near-infrared photometry from the InfraRed Survey Facility (IRSF; Kato et al. 2007, Cat. II/288). We choose regions of diverse physical size, star formation rates (SFRs), and ages. We also cover a wide range of locations and surrounding environments in the LMC. These active star-forming regions are LHA 120-N 11, N 44, N 51, N 105, N 113, N 120, N 144, N 160, and N 206. Some have been well-studied (e.g., N11, N44, N160) in the past, while others (e.g., N51, N144) have received little attention. We identify 1045 YSO candidates, including 918 never before identified and 127 matching previous candidate lists. We characterize the evolutionary stage and physical properties of each candidate using the spectral energy distribution (SED) fitter of Robitaille et al. (2007ApJS..169..328R) and estimate mass functions and SFRs for each region.
Knowledge of the evolution of circumstellar accretion disks is pivotal to our understanding of star and planet formation; and yet despite intensive theoretical and observational studies, the disk dissipation process is not well understood. Infrared observations of large numbers of young stars, as performed by the Spitzer Space Telescope, may advance our knowledge of this inherently complex process. While infrared data reveal the evolutionary status of the disk, they hold little information on the properties of the central star and the accretion characteristics. Existing 2MASS and Spitzer archive data of the Lynds 1630N and 1641 clouds in the Orion GMC provide disk properties of a large number of young stars. We wish to complement these data with optical data that provide the physical stellar parameters and accretion characteristics.
We used Spitzer infrared observations to find the young stars of two HII regions in the Large Magellanic Cloud, N63 and N180. The young stellar object (YSO) candidates were identified in each nebula by means of color-color, color-magnitude diagrams, and the shapes of their spectral energy distributions (SEDs). The most luminous YSOs are found near the ionization fronts within strong 8um emission clumps. Most YSOs, less luminous, are seen in projection inside the HII regions. HST images show several Class I stars that have emerged along the borders of the HII regions; other YSOs are embedded in cometary clouds. The most luminous YSO of N63 is connected to a string of pointlike sources. Its SED can be modeled by a central source of stellar mass M_*_ between 7 and 11M_{sun}_, with a circumstellar disk of outer radius R_d_ of ~55AU, and an envelope of moderate accretion rate, M_env_ of ~2x10^-5^M_{sun}_/yr. N180 is experiencing a phase of star formation more intense than N63, attested by the properties of its most luminous YSO: M_*_ of 25M_{sun}_, R_d_ of ~200AU, and M_env_ of ~1.5x10^-3^M_{sun}_/yr. The modes of triggered star formation in N63 and N180 appear similar to those seen in Galactic HII regions.