- ID:
- ivo://CDS.VizieR/J/AJ/150/118
- Title:
- YSOVAR infrared photometry in IRAS 20050+2720
- Short Name:
- J/AJ/150/118
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5{mu}m with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2-6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color-magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/148/122
- Title:
- YSOVAR: infrared photometry in Lynds 1688
- Short Name:
- J/AJ/148/122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The emission from young stellar objects (YSOs) in the mid-infrared (mid-IR) is dominated by the inner rim of their circumstellar disks. We present IR data from the Young Stellar Object VARiability (YSOVAR) survey of ~800 objects in the direction of the Lynds 1688 (L1688) star-forming region over four visibility windows spanning 1.6yr using the Spitzer Space Telescope in its warm mission phase. Among all light curves, 57 sources are cluster members identified based on their spectral energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the light curves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6yr. Nonperiodic light curves often still show a preferred timescale of variability that is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption toward the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.
- ID:
- ivo://CDS.VizieR/J/AJ/150/175
- Title:
- YSOVAR: infrared photometry in NGC 1333
- Short Name:
- J/AJ/150/175
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As part of the Young Stellar Object VARiability (YSOVAR) program, we monitored NGC 1333 for ~35 days at 3.6 and 4.5{mu}m using the Spitzer Space Telescope. We report here on the mid-infrared variability of the point sources in the ~10'x~20' area centered on 03:29:06, +31:19:30 (J2000). Out of 701 light curves in either channel, we find 78 variables over the YSOVAR campaign. About half of the members are variable. The variable fraction for the most embedded spectral energy distributions (SEDs) (Class I, flat) is higher than that for less embedded SEDs (Class II), which is in turn higher than the star-like SEDs (Class III). A few objects have amplitudes (10-90th percentile brightness) in [3.6] or [4.5]>0.2mag; a more typical amplitude is 0.1-0.15mag. The largest color change is >0.2mag. There are 24 periodic objects, with 40% of them being flat SED class. This may mean that the periodic signal is primarily from the disk, not the photosphere, in those cases. We find 9 variables likely to be "dippers", where texture in the disk occults the central star, and 11 likely to be "bursters", where accretion instabilities create brightness bursts. There are 39 objects that have significant trends in [3.6]-[4.5] color over the campaign, about evenly divided between redder-when-fainter (consistent with extinction variations) and bluer-when-fainter. About a third of the 17 Class 0 and/or jet-driving sources from the literature are variable over the YSOVAR campaign, and a larger fraction (~half) are variable between the YSOVAR campaign and the cryogenic-era Spitzer observations (6-7 years), perhaps because it takes time for the envelope to respond to changes in the central source. The NGC 1333 brown dwarfs do not stand out from the stellar light curves in any way except there is a much larger fraction of periodic objects (~60% of variable brown dwarfs are periodic, compared to ~30% of the variables overall).
- ID:
- ivo://CDS.VizieR/J/ApJ/753/149
- Title:
- YSOVAR: six eclipsing binaries in Orion
- Short Name:
- J/ApJ/753/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Eclipsing binaries (EBs) provide critical laboratories for empirically testing predictions of theoretical models of stellar structure and evolution. Pre-main-sequence (PMS) EBs are particularly valuable, both due to their rarity and the highly dynamic nature of PMS evolution, such that a dense grid of PMS EBs is required to properly calibrate theoretical PMS models. Analyzing multi-epoch, multi-color light curves for ~2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have identified 12 stars whose light curves show eclipse features. Four of these 12 EBs are previously known. Supplementing our light curves with follow-up optical and near-infrared spectroscopy, we establish two of the candidates as likely field EBs lying behind the ONC. We confirm the remaining six candidate systems, however, as newly identified ONC PMS EBs. These systems increase the number of known PMS EBs by over 50% and include the highest mass ({theta}^1^ Ori E, for which we provide a complete set of well-determined parameters including component masses of 2.807 and 2.797M_{sun}_) and longest-period (ISOY J053505.71-052354.1, P~20 days) PMS EBs currently known. In two cases ({theta}^1^ Ori E and ISOY J053526.88-044730.7), enough photometric and spectroscopic data exist to attempt an orbit solution and derive the system parameters. For the remaining systems, we combine our data with literature information to provide a preliminary characterization sufficient to guide follow-up investigations of these rare, benchmark systems.
- ID:
- ivo://CDS.VizieR/J/MNRAS/448/3167
- Title:
- z>~5 AGN in Chandra Deep Field-South
- Short Name:
- J/MNRAS/448/3167
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate early black hole (BH) growth through the methodical search for z>~5 active galactic nuclei (AGN) in the Chandra} Deep Field South. We base our search on the Chandra 4-Ms data with flux limits of 9.1x10^-18^erg/s/cm2 (soft, 0.5-2keV) and 5.5x10^-17^erg/s/cm2 (hard, 2-8keV). At z~5, this corresponds to luminosities as low as ~10^42^erg/s/cm2 (~10^43^erg/s) in the soft (hard) band and should allow us to detect Compton-thin AGN with M_BH_>10^7^M_{sun}_ and Eddington ratios >0.1. Our field (0.03deg^2^) contains over 600 z~5 Lyman Break Galaxies. Based on lower redshift relations, we would expect ~20 of them to host AGN. After combining the Chandra data with Great Observatories Origins Deep Survey (GOODS)/Advanced Camera for Surveys (ACS), CANDELS/Wide Field Camera 3 and Spitzer/Infrared Array Camera data, the sample consists of 58 high-redshift candidates. We run a photometric redshift code, stack the GOODS/ACS data, apply colour criteria and the Lyman Break Technique and use the X-ray Hardness Ratio. We combine our tests and using additional data find that all sources are most likely at low redshift. We also find five X-ray sources without a counterpart in the optical or infrared which might be spurious detections. We conclude that our field does not contain any convincing z>~5 AGN. Explanations for this result include a low BH occupation fraction, a low AGN fraction, short, super-Eddington growth modes, BH growth through BH-BH mergers or in optically faint galaxies. By searching for z>~5 AGN, we are setting the foundation for constraining early BH growth and seed formation scenarios.
- ID:
- ivo://CDS.VizieR/J/ApJ/813/78
- Title:
- z=4.5 and z=5.7 LAEs properties with Spitzer
- Short Name:
- J/ApJ/813/78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results from a stellar population modeling analysis of a sample of 162 z=4.5 and 14 z=5.7 Ly{alpha} emitting galaxies (LAEs) in the Bootes field, using deep Spitzer/IRAC data at 3.6 and 4.5 {mu}m from the Spitzer Ly{alpha} Survey, along with Hubble Space Telescope NICMOS and WFC3 imaging at 1.1 and 1.6 {mu}m for a subset of the LAEs. This represents one of the largest samples of high-redshift LAEs imaged with Spitzer IRAC. We find that 30/162 (19%) of the z=4.5 LAEs and 9/14 (64%) of the z=5.7 LAEs are detected at >=3{sigma} in at least one IRAC band. Individual z=4.5 IRAC-detected LAEs have a large range of stellar mass, from 5x10^8^-10^11^ M_{sun}_. One-third of the IRAC-detected LAEs have older stellar population ages of 100 Myr^-1^ Gyr, while the remainder have ages <100 Myr. A stacking analysis of IRAC-undetected LAEs shows this population to be primarily low mass (8-20x10^8^ M_{sun}_) and young (64-570 Myr). We find a correlation between stellar mass and the dust-corrected ultraviolet-based star formation rate (SFR) similar to that at lower redshifts, in that higher mass galaxies exhibit higher SFRs. However, the z=4.5 LAE correlation is elevated 4-5 times in SFR compared to continuum-selected galaxies at similar redshifts. The exception is the most massive LAEs which have SFRs similar to galaxies at lower redshifts suggesting that they may represent a different population of galaxies than the traditional lower-mass LAEs, perhaps with a different mechanism promoting Ly{alpha} photon escape.
- ID:
- ivo://CDS.VizieR/J/AJ/151/120
- Title:
- z<1 3CR radio galaxies and quasars star formation
- Short Name:
- J/AJ/151/120
- Date:
- 16 Dec 2021 13:37:06
- Publisher:
- CDS
- Description:
- Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift z<1. The far-infrared (FIR, 70-500 {mu}m) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared Survey Explorer and cataloged data to analyze the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGNs), and cool dust heated by stars. The level of emission from relativistic jets is also estimated to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of 30 {mu}m. The low-excitation radio galaxies and the MIR-weak sources represent an MIR- and FIR-faint AGN population that is different from the high-excitation MIR-bright objects; it remains an open question whether they are at a later evolutionary state or an intrinsically different population. The derived luminosities for host starlight and dust heated by star formation are converted to stellar masses and star-formation rates (SFR). The host-normalized SFR of the bulk of the 3CR sources is low when compared to other galaxy populations at the same epoch. Estimates of the dust mass yield a 1-100 times lower dust/stellar mass ratio than for the Milky Way, which indicates that these 3CR hosts have very low levels of interstellar matter and explains the low level of star formation. Less than 10% of the 3CR sources show levels of star formation above those of the main sequence of star-forming galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/897/44
- Title:
- 120 3<=z<=5 galaxies candidates in CANDELS fields
- Short Name:
- J/ApJ/897/44
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- Using the CANDELS photometric catalogs for the Hubble Space Telescope ACS and WFC3, we identified massive evolved galaxies at 3<z<4.5 employing three different selection methods. We find the comoving number density of these objects to be ~2x10^-5^ and 8x10^-6^/Mpc^3^ after correction for completeness for two redshift bins centered at z=3.4, 4.7. We quantify a measure of how much confidence we should have for each candidate galaxy from different selections and what the conservative error estimates propagated into our selection are. Then we compare the evolution of the corresponding number densities and their stellar mass density with numerical simulations, semianalytical models, and previous observational estimates, which shows slight tension at higher redshifts as the models tend to underestimate the number and mass densities. By estimating the average halo masses of the candidates (M_h_~4.2, 1.9, and 1.3x1012M{sun} for redshift bins centered at z=3.4, 4.1, and 4.7), we find them to be consistent with halos that were efficient in turning baryons to stars, relatively immune to the feedback effects, and on the verge of transition into hot-mode accretion. This can suggest the relative cosmological starvation of the cold gas followed by an overconsumption phase in which the galaxy rapidly consumes the available cold gas as one of the possible drivers for the quenching of the massive evolved population at high redshift.
- ID:
- ivo://CDS.VizieR/J/ApJ/684/905
- Title:
- z>1 galaxy clusters from IRAC Shallow Survey
- Short Name:
- J/ApJ/684/905
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have identified 335 galaxy cluster and group candidates, 106 of which are at z>1, using a 4.5um-selected sample of objects from a 7.25deg^2^ region in the Spitzer Infrared Array Camera (IRAC) Shallow Survey. Clusters were identified as three-dimensional overdensities using a wavelet algorithm, based on photometric redshift probability distributions derived from IRAC and NOAO Deep Wide-Field Survey data. We estimate only ~10% of the detections are spurious. To date 12 of the z>1 candidates have been confirmed spectroscopically, at redshifts from 1.06 to 1.41. Velocity dispersions of ~750km/s for two of these argue for total cluster masses well above 10^14^M_{sun}_, as does the mass estimated from the rest-frame near-infrared stellar luminosity. Although not selected to contain a red sequence, some evidence for red sequences is present in the spectroscopically confirmed clusters, and brighter galaxies are systematically redder than the mean galaxy color in clusters at all redshifts.
- ID:
- ivo://CDS.VizieR/J/PASJ/65/113
- Title:
- 0.006<=z<=0.8 IR galaxies with AKARI
- Short Name:
- J/PASJ/65/113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the 9 and 18um luminosity functions (LFs) of galaxies at 0.006<=z<=0.8 (with an average redshift of ~0.04) using the AKARI mid-infrared all-sky survey catalog. We selected 243 galaxies at 9um and 255 galaxies at 18um from the Sloan Digital Sky Survey (SDSS) spectroscopy region. These galaxies were then classified by their optical emission lines, such as the line width of H{alpha} or by their emission line ratios of [OIII]/H{beta} and [NII]/H{alpha} into five types: Type 1 active galactic nuclei (AGN) (Type 1); Type 2 AGN (Type 2); low-ionization narrow emission line galaxies (LINER); galaxies with both star formation and narrow-line AGN activity (composite galaxies); and star-forming galaxies (SF). We found that (i) the number density ratio of Type 2 to Type 1 AGNs is 1.73+/-0.36, which is larger than a result obtained from the optical LF and (ii) this ratio decreases with increasing 18um luminosity.