- ID:
- ivo://CDS.VizieR/J/ApJ/845/44
- Title:
- 340GHz SMA obs. of 50 nearby protoplanetary disks
- Short Name:
- J/ApJ/845/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a survey at subarcsecond resolution of the 340GHz dust continuum emission from 50 nearby protoplanetary disks, based on new and archival observations with the Submillimeter Array. The observed visibility data were modeled with a simple prescription for the radial surface brightness profile. The results were used to extract intuitive, empirical estimates of the emission "size" for each disk, R_eff_, defined as the radius that encircles a fixed fraction of the total continuum luminosity, L_mm_. We find a significant correlation between the sizes and luminosities, such that R_eff_{propto}L_mm_^0.5^, providing a confirmation and quantitative characterization of a putative trend that was noted previously. This correlation suggests that these disks have roughly the same average surface brightness interior to their given effective radius, ~0.2Jy/arcsec^2^ (or 8K in brightness temperature). The same trend remains, but the 0.2dex of dispersion perpendicular to this relation essentially disappears, when we account for the irradiation environment of each disk with a crude approximation of the dust temperatures based on the stellar host luminosities. We consider two (not mutually exclusive) explanations for the origin of this size-luminosity relationship. Simple models of the growth and migration of disk solids can account for the observed trend for a reasonable range of initial conditions, but only on timescales that are much shorter than the nominal ages present in the sample. An alternative scenario invokes optically thick emission concentrated on unresolved scales, with filling factors of a few tens of percent, which is perhaps a manifestation of localized particle traps.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/699/1092
- Title:
- Giant molecular clouds (SRBY)
- Short Name:
- J/ApJ/699/1092
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The properties of Galactic molecular clouds tabulated by Solomon et al. (SRBY; 1987ApJ...319..730S) are re-examined using the Boston University-FCRAO Galactic Ring Survey of ^13^COJ=1-0 emission. These new data provide a lower opacity tracer of molecular clouds and improved angular and spectral resolution compared with previous surveys of molecular line emission along the Galactic Plane. We calculate giant molecular cloud (GMC) masses within the SRBY cloud boundaries assuming local thermodynamic equilibrium (LTE) conditions throughout the cloud and a constant H_2_ to ^13^CO abundance, while accounting for the variation of the ^12^C/^13^C with galactocentric radius.
- ID:
- ivo://CDS.VizieR/J/A+A/641/A53
- Title:
- Giant molecular filament GMF54 images
- Short Name:
- J/A+A/641/A53
- Date:
- 07 Mar 2022 07:18:57
- Publisher:
- CDS
- Description:
- Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large (>~50pc) and massive (>~10^5^M_{sun}_) filaments, know as giant molecular filaments (GMFs), may be linked to galactic dynamics and trace the mid-plane of the gravitational potential in the Milky Way. Yet our physical understanding of GMFs is still poor. We investigate the dense gas properties of one GMF, with the ultimate goal of connecting these dense gas tracers with star formation processes in the GMF. We have imaged one entire GMF located at l~52-54{deg} longitude, GMF54 (~68pc long), in the empirical dense gas tracers using the HCN(1-0), HNC(1-0), HCO^+^(1-0) lines, and their ^13^C isotopologue transitions, as well as the N_2_H^+^1-0) line. We study the dense gas distribution, the column density probability density functions (N-PDFs) and the line ratios within the GMF. The dense gas molecular transitions follow the extended structure of the filament with area filling factors between 0.06 and 0.28 with respect to ^13^CO(1-0). We constructed the N-PDFs of H_2_ for each of the dense gas tracers based on their column densities and assumed uniform abundance. The N-PDFs of the dense gas tracers appear curved in log-log representation, and the HCO^+^ NPDF has the largest log-normal width and flattest power-law slope index. Studying the N-PDFs for sub-regions of GMF54, we found an evolutionary trend in the N-PDFs that high-mass star forming and Photon Dominated Regions (PDRs) have flatter power-law indices. The integrated intensity ratios of the molecular lines in GMF54 are comparable to those in nearby galaxies. In particular, the N_2_H^+^/^13^CO ratio, which traces the dense gas fraction, has similar values in GMF54 and all nearby galaxies except Ultraluminous Infrared Galaxies (ULIRGs). As the largest coherent cold gaseous structure in our Milky Way, GMFs, are outstanding candidates for connecting studies of star formation on Galactic and extragalactic scales. By analyzing a complete map of the dense gas in a GMF we have found that: (1) the dense gas N-PDFs appear flatter in more evolved regions and steeper in younger regions, and (2) its integrated dense gas intensity ratios are similar to those of nearby galaxies.
- ID:
- ivo://CDS.VizieR/J/A+A/634/A139
- Title:
- Giant Molecular Filament THOR datacubes
- Short Name:
- J/A+A/634/A139
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Molecular clouds form from the atomic phase of the interstellar medium. However, characterizing the transition between the atomic and the molecular interstellar medium (ISM) is a complex observational task. Here we address cloud formation processes by combining HI self absorption (HISA) with molecular line data. Column density probability density functions (N-PDFs) are a common tool for examining molecular clouds. One scenario proposed by numerical simulations is that the N-PDF evolves from a log-normal shape at early times to a power-law-like shape at later times. To date, investigations of N-PDFs have been mostly limited to the molecular component of the cloud. In this paper, we study the cold atomic component of the giant molecular filament GMF38.1-32.4a (GMF38a, distance=3.4kpc, length~230pc), calculate its N-PDFs, and study its kinematics. We identify an extended HISA feature, which is partly correlated with the ^13^CO emission. The peak velocities of the HISA and 13CO observations agree well on the eastern side of the filament, whereas a velocity offset of approximately 4km/s is found on the western side. The sonic Mach number we derive from the linewidth measurements shows that a large fraction of the HISA, which is ascribed to the cold neutral medium (CNM), is at subsonic and transonic velocities. The column density of the CNM part is on the order of 10^20^ to 10^21^cm^-2^. The column density of molecular hydrogen, traced by ^13^CO, is an order of magnitude higher. The N-PDFs from HISA (CNM), HI emission (the warm and cold neutral medium), and 13CO (molecular component) are well described by log-normal functions, which is in agreement with turbulent motions being the main driver of cloud dynamics. The N-PDF of the molecular component also shows a power law in the high column-density region, indicating self-gravity. We suggest that we are witnessing two different evolutionary stages within the filament. The eastern subregion seems to be forming a molecular cloud out of the atomic gas, whereas the western subregion already shows high column density peaks, active star formation, and evidence of related feedback processes.
- ID:
- ivo://CDS.VizieR/J/A+A/645/A14
- Title:
- GIBS sources equivalent widths
- Short Name:
- J/A+A/645/A14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We developed a set of procedures to automatically detect and measure the DIB around 8620{AA} (the Gaia DIB) for a wide range of temperatures. The method was tested on about 5000 spectra from the Giraffe Inner Bulge Survey (GIBS; Zoccali et al., 2014A&A...562A..66Z), and 4194 reasonable fitting results were got. We made use of the reddenings, E(J-Ks), from the extinction map developed by Surot et al. (2020arXiv201002723S). A linear correlation between the equivalent width (EW) and E(J-Ks) was derived as E(J-Ks)/EW = 1.875, according to E(B-V)/EW = 2.721, which is highly consistent with previous results toward similar sightlines. After a correction based on the Vista Variables in the Via Lactea (VVV; Minniti et al., 2010NewA...15..433M) database for both EW and E(J-Ks), the coefficient derived from individual GIBS fields, E(J-Ks)/EW=1.884, is also in perfect agreement with literature values. Based on a subsample of 1015 stars toward the Galactic center, we determined a rest-frame wavelength of the Gaia DIB as 8620.55{AA}. A Gaussian profile is proved to be a proper and stable assumption for the Gaia DIB as no intrinsic asymmetry is found.
- ID:
- ivo://CDS.VizieR/J/ApJ/793/92
- Title:
- Global properties of z=1~2 GMASS galaxies
- Short Name:
- J/ApJ/793/92
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on a study of the 2300-2600 {AA} Fe II/Fe II* multiplets in the rest-UV spectra of star-forming galaxies at 1.0<z<2.6 as probes of galactic-scale outflows. We extracted a mass-limited sample of 97 galaxies at z~1.0-2.6 from ultra-deep spectra obtained during the GMASS spectroscopic survey in the GOODS South field with the Very Large Telescope and FORS2. We obtain robust measures of the rest equivalent width of the Fe II absorption lines down to a limit of W_r_>1.5 {AA} and of the Fe II* emission lines to W_r_>0.5 {AA}. Whenever we can measure the systemic redshift of the galaxies from the [O II] emission line, we find that both the Fe II and Mg II absorption lines are blueshifted, indicating that both species trace gaseous outflows. We also find, however, that the Fe II gas has generally lower outflow velocity relative to that of Mg II. We investigate the variation of Fe II line profiles as a function of the radiative transfer properties of the lines, and find that transitions with higher oscillator strengths are more blueshifted in terms of both line centroids and line wings. We discuss the possibility that Fe II lines are suppressed by stellar absorptions. The lower velocities of the Fe II lines relative to the Mg II doublet, as well as the absence of spatially extended Fe II* emission in two-dimensional stacked spectra, suggest that most clouds responsible for Fe II absorption lie close (3~4 kpc) to the disks of galaxies. We show that the Fe II/Fe II* multiplets offer unique probes of the kinematic structure of galactic outflows.
- ID:
- ivo://CDS.VizieR/J/A+A/653/A108
- Title:
- Globules and pillars in Cygnus X
- Short Name:
- J/A+A/653/A108
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- IRAS 20319+3958 in Cygnus X South is a rare example of a free-floating globule (mass ~240M_{sun}_, length ~1.5pc) with an internal HII region created by the stellar feedback of embedded intermediate-mass stars, in particular, one Herbig Be star. In Schneider et al. (2012A&A...542L..18S) and Djupvik et al. (2017A&A...599A..37D, Cat. J/A+A/599/A37), we proposed that the emission of the far-infrared (FIR) lines of [CII] at 158um and [OI] at 145um in the globule head are mostly due to an internal photodissociation region (PDR). Here, we present a Herschel/HIFI [CII] 158um map of the whole globule and a large set of other FIR lines (mid-to high-J CO lines observed with Herschel/PACS and SPIRE, the [OI] 63um line and the ^12^CO 16->15 line observed with upGREAT on SOFIA), covering the globule head and partly a position in the tail. The [CII] map revealed that the whole globule is probably rotating. Highly collimated, high-velocity [CII] emission is detected close to the Herbig Be star. We performed a PDR analysis using the KOSMA-{tau}PDR code for one position in the head and one in the tail. The observed FIR lines in the head can be reproduced with a two-component model: an extended, non-clumpy outer PDR shell and a clumpy, dense, and thin inner PDR layer, representing the interface between the HII region cavity and the external PDR. The modelled internal UV field of ~2500Go is similar to what we obtained from the Herschel FIR fluxes, but lower than what we estimated from the census of the embedded stars. External illumination from the ~30pc distant Cyg OB2 cluster, producing an UV field of ~150-600Go as an upper limit, is responsible for most of the [CII] emission. For the tail, we modelled the emission with a non-clumpy component, exposed to a UV-field of around 140Go.
- ID:
- ivo://CDS.VizieR/J/A+A/569/A110
- Title:
- GMOS-IFU spectroscopy of dwarf galaxy HS 2236+1344
- Short Name:
- J/A+A/569/A110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The main goal of this study is to carry out a spatially resolved investigation of the warm interstellar medium (ISM) in the extremely metal-poor blue compact dwarf galaxy HS 2236+1344. Special emphasis is laid on the analysis of the spatial distribution of chemical abundances, emission-line ratios and kinematics of the ISM, and to the recent star-forming activity in this galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/593/A49
- Title:
- G35.20-0.74N VLA continuum images
- Short Name:
- J/A+A/593/A49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Atacama Large Millimeter/submillimeter Array (ALMA) observations of the high-mass star-forming region G35.20-0.74N have revealed the presence of a Keplerian disk in core B rotating about a massive object of 18M_{sun}_, as computed from the velocity field. The luminosity of such a massive star would be comparable to (or higher than) the luminosity of the whole star-forming region. To solve this problem it has been proposed that core B could harbor a binary system. This could also explain the possible precession of the radio jet associated with this core, which has been suggested by its S-shaped morphology. We establish the origin of the free-free emission from core B and investigate the existence of a binary system at the center of this massive core and the possible precession of the radio jet. We carried out VLA continuum observations of G35.20-0.74N at 2cm in the B configuration and at 1.3cm and 7mm in the A and B configurations. The bandwidth at 7mm covers the CH3OH maser line at 44.069GHz. Continuum images at 6 and 3.6cm in the A configuration were obtained from the VLA archive. We also carried out VERA observations of the H_2_O maser line at 22.235GHz.
- ID:
- ivo://CDS.VizieR/J/A+A/632/A57
- Title:
- G328.2551-0.5321 spectra
- Short Name:
- J/A+A/632/A57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Classical hot cores are rich in molecular emission, and they show a high abundance of complex organic molecules (COMs). The emergence of molecular complexity that is represented by COMs, in particular, is poorly constrained in the early evolution of hot cores. We put observational constraints on the physical location of COMs in a resolved high-mass protostellar envelope associated with the G328.2551-0.5321 clump. The protostar is single down to 400au scales and we resolved the envelope structure down to this scale. High angular resolution observations using the Atacama Large Millimeter Array allowed us to resolve the structure of the inner envelope and pin down the emission region of COMs. We use local thermodynamic equilibrium modelling of the available 7.5GHz bandwidth around 345GHz to identify the COMs towards two accretion shocks and a selected position representing the bulk emission of the inner envelope. We quantitatively discuss the derived molecular column densities and abundances towards these positions, and use our line identification to qualitatively compare this to the emission of COMs seen towards the central position, corresponding to the protostar and its accretion disk. We detect emission from 10 COMs, and identify a line of deuterated water (HDO). In addition to methanol (CH_3_OH), methyl formate (CH_3_OCHO) and formamide (HC(O)NH_2_) have the most extended emission. Together with HDO, these molecules are found to be associated with both the accretion shocks and the inner envelope, which has a moderate temperature of Tkin~110K. We find a significant difference in the distribution of COMs. O-bearing COMs, such as ethanol, acetone, and ethylene glycol are almost exclusively found and show a higher abundance towards the accretion shocks with Tkin~180K. Whereas N-bearing COMs with a CN group, such as vinyl and ethyl cyanide peak on the central position, thus the protostar and the accretion disk. The molecular composition is similar towards the two shock positions, while it is significantly different towards the inner envelope, suggesting an increase in abundance of O-bearing COMs towards the accretion shocks. We present the first observational evidence for a large column density of COMs seen towards accretion shocks at the centrifugal barrier at the inner envelope. The overall molecular emission shows increased molecular abundances of COMs towards the accretion shocks compared to the inner envelope. The bulk of the gas from the inner envelope is still at a moderate temperature of Tkin~110K, and we find that the radiatively heated inner region is very compact (<1000au). Since the molecular composition is dominated by that of the accretion shocks and the radiatively heated hot inner region is very compact, we propose this source to be a precursor to a classical, radiatively heated hot core. By imaging the physical location of HDO, we find that it is consistent with an origin within the moderately heated inner envelope, suggesting that it originates from sublimation of ice from the grain surface and its destruction in the vicinity of the heating source has not been efficient yet.