Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/743/140
- Title:
- Abundances (Be,{alpha}) in metal-poor stars
- Short Name:
- J/ApJ/743/140
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The light elements, Li, Be, and B, provide tracers for many aspects of astronomy including stellar structure, Galactic evolution, and cosmology. We have made observations of Be in 117 metal-poor stars ranging in metallicity from [Fe/H]=-0.5 to -3.5 with Keck I/HIRES. Our spectra are high resolution (~42000) and high signal to noise (the median is 106 per pixel). We have determined the stellar parameters spectroscopically from lines of FeI, FeII, TiI, and TiII. The abundances of Be and O were derived by spectrum synthesis techniques, while abundances of Fe, Ti, and Mg were found from many spectral line measurements. We have kinematic information on 114 stars in our sample and they divide equally into dissipative and accretive stars.
- ID:
- ivo://CDS.VizieR/J/AJ/152/176
- Title:
- Abundances for all seven stars in Latham 1
- Short Name:
- J/AJ/152/176
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R~60000), high-signal-to-noise ratio (<S/N> ~100) spectra obtained with the Otto Struve 2.1m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55{<=}[Fe/H]{<=}0.06dex ({sigma}=0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.
- ID:
- ivo://CDS.VizieR/J/ApJ/778/149
- Title:
- Abundances for 3 stars in Sgr dSph
- Short Name:
- J/ApJ/778/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From chemical abundance analysis of stars in the Sagittarius dwarf spheroidal galaxy (Sgr), we conclude that the {alpha}-element deficiencies cannot be due to the Type Ia supernova (SN Ia) time-delay scenario of Tinsley. Instead, the evidence points to low [{alpha}/Fe] ratios resulting from an initial mass function (IMF) deficient in the highest mass stars. The critical evidence is the 0.4 dex deficiency of [O/Fe], [Mg/Fe], and other hydrostatic elements, contrasting with the normal trend of r-process [Eu/Fe]_r_ with [Fe/H]. Supporting evidence comes from the hydrostatic element (O, Mg, Na, Al, Cu) [X/Fe] ratios, which are inconsistent with iron added to the Milky Way (MW) disk trends. Also, the ratio of hydrostatic to explosive (Si, Ca, Ti) element abundances suggests a relatively top-light IMF. Abundance similarities with the LMC, Fornax, and IC 1613 suggest that their {alpha}-element deficiencies also resulted from IMFs lacking the most massive SNe II. The top-light IMF, as well as the normal trend of r-process [Eu/Fe]_r_ with [Fe/H] in Sgr, indicates that massive SNe II (>~30M_{sun}_) are not major sources of r-process elements. High [La/Y] ratios, consistent with leaky-box chemical evolution, are confirmed but ~0.3 dex larger than theoretical asymptotic giant branch (AGB) predictions. This suggests that a substantial increase in the theoretical ^13^C pocket in low-mass AGB stars is required. Sgr has the lowest [Rb/Zr] ratios known, consistent with pollution by low-mass (<~2M_{sun}_) AGB stars near [Fe/H]=-0.6, likely resulting from leaky-box chemical evolution. The [Cu/O] trends in Sgr and the MW suggest that Cu yields increase with both metallicity and stellar mass, as expected from Cu production by the weak s-process in massive stars. Finally, we present an updated hyperfine splitting line list, an abundance analysis of Arcturus, and further develop our error analysis formalism.
- ID:
- ivo://CDS.VizieR/J/ApJ/865/68
- Title:
- Abundances for 79 Sun-like stars within 100pc
- Short Name:
- J/ApJ/865/68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The compositions of stars are a critical diagnostic tool for many topics in astronomy such as the evolution of our Galaxy, the formation of planets, and the uniqueness of the Sun. Previous spectroscopic measurements indicate a large intrinsic variation in the elemental abundance patterns of stars with similar overall metal content. However, systematic errors arising from inaccuracies in stellar models are known to be a limiting factor in such studies, and thus it is uncertain to what extent the observed diversity of stellar abundance patterns is real. Here we report the abundances of 30 elements with precisions of 2% for 79 Sun-like stars within 100pc. Systematic errors are minimized in this study by focusing on solar twin stars and performing a line-by-line differential analysis using high-resolution, high-signal-to-noise spectra. We resolve [X/Fe] abundance trends in galactic chemical evolution at precisions of 10^-3^dex/Gyr and reveal that stars with similar ages and metallicities have nearly identical abundance patterns. Contrary to previous results, we find that the ratios of carbon-to-oxygen and magnesium-to-silicon in solar-metallicity stars are homogeneous to within 10% throughout the solar neighborhood, implying that exoplanets may exhibit much less compositional diversity than previously thought. Finally, we demonstrate that the Sun has a subtle deficiency in refractory material relative to >80% of solar twins (at 2{sigma} confidence), suggesting a possible signpost for planetary systems like our own.
- ID:
- ivo://CDS.VizieR/J/ApJ/662/15
- Title:
- Abundances in extragalactic HII regions
- Short Name:
- J/ApJ/662/15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determine the primordial helium mass fraction Yp using 93 spectra of 86 low-metallicity extragalactic HII regions. This sample constitutes the largest and most homogeneous high-quality data set in existence for the determination of Yp. For comparison, and to improve the statistics in our investigation of systematic effects affecting the Yp determination, we have also considered a sample of 271 low-metallicity HII regions selected from Data Release 5 of the Sloan Digital Sky Survey. Although this larger sample shows more scatter, it gives results that are consistent at the 2{sigma} level with our original sample. We have considered known systematic effects that may affect the ^4^He abundance determination.
- ID:
- ivo://CDS.VizieR/J/ApJ/768/L12
- Title:
- Abundances in host stars XO-2S and XO-2N
- Short Name:
- J/ApJ/768/L12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- With the aim of connecting the compositions of stars and planets, we present the abundances of carbon and oxygen, as well as iron and nickel, for the transiting exoplanet host star XO-2N and its wide-separation binary companion XO-2S. Stellar parameters are derived from high-resolution, high signal-to-noise spectra, and the two stars are found to be similar in their T_eff_, log g, iron ([Fe/H]), and nickel ([Ni/H]) abundances. Their carbon ([C/H]) and oxygen ([O/H]) abundances also overlap within errors, although XO-2N may be slightly more C-rich and O-rich than XO-2S. The C/O ratios of both stars (~0.60+/-0.20) may also be somewhat larger than solar (C/O~0.50). The XO-2 system has a transiting hot Jupiter orbiting one binary component but not the other, allowing us to probe the potential effects planet formation might have on the host star composition. Additionally, with multiple observations of its atmosphere the transiting exoplanet XO-2b lends itself to compositional analysis, which can be compared to the natal chemical environment established by our binary star elemental abundances. This work sets the stage for determining how similar or different exoplanet and host star compositions are, and the implications for planet formation, by discussing the C/O ratio measurements in the unique environment of a visual binary system with one star hosting a transiting hot Jupiter.
- ID:
- ivo://CDS.VizieR/J/ApJ/857/2
- Title:
- Abundances in 6 metal-poor stars
- Short Name:
- J/ApJ/857/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new abundances derived from CuI, CuII, ZnI, and ZnII lines in six warm (5766<=T_eff_<=6427K), metal-poor (-2.50<=[Fe/H]<=-0.95) dwarf and subgiant (3.64<=logg<=4.44) stars. These abundances are derived from archival high-resolution ultraviolet spectra from the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and ground-based optical spectra from several observatories. Ionized Cu and Zn are the majority species, and abundances derived from CuII and ZnII lines should be largely insensitive to departures from local thermodynamic equilibrium (LTE). We find good agreement between the [Zn/H] ratios derived separately from ZnI and ZnII lines, suggesting that departures from LTE are, at most, minimal (<~0.1dex). We find that the [Cu/H] ratios derived from CuII lines are 0.36+/-0.06dex larger than those derived from CuI lines in the most metal-poor stars ([Fe/H]{<}-1.8), suggesting that LTE underestimates the Cu abundance derived from CuI lines. The deviations decrease in more metal-rich stars. Our results validate previous theoretical non-LTE calculations for both Cu and Zn, supporting earlier conclusions that the enhancement of [Zn/Fe] in metal-poor stars is legitimate, and the deficiency of [Cu/Fe] in metal-poor stars may not be as large as previously thought.
- ID:
- ivo://CDS.VizieR/J/A+A/579/A104
- Title:
- Abundances in NGC 5053 and NGC 5634
- Short Name:
- J/A+A/579/A104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of "unassociated" MW halo globulars, and of the metal poor Sgr dSph main body population. We derive a metallicity of [FeII/H]=-2.26+/-0.10 for NGC 5053, and of [FeI/H]=-1.99+/-0.075 and -1.97+/-0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal poor globular clusters in the MW. Both clusters display an alpha enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. The chemistry of the Sgr dSph main body populations is similar to the one of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system.
- ID:
- ivo://CDS.VizieR/J/ApJ/824/75
- Title:
- Abundances in 23 open clusters. I.
- Short Name:
- J/ApJ/824/75
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Neutron-capture elements, those with Z>35, are the least well understood in terms of nucleosynthesis and formation environments. The rapid neutron-capture, or r-process, elements are formed in the environments and/or remnants of massive stars, while the slow neutron-capture, or s-process, elements are primarily formed in low-mass AGB stars. These elements can provide much information about Galactic star formation and enrichment, but observational data are limited. We have assembled a sample of 68 stars in 23 open clusters that we use to probe abundance trends for six neutron-capture elements (Eu, Gd, Dy, Mo, Pr, and Nd) with cluster age and location in the disk of the Galaxy. In order to keep our analysis as homogeneous as possible, we use an automated synthesis fitting program, which also enables us to measure multiple (3-10) lines for each element. We find that the pure r-process elements (Eu, Gd, and Dy) have positive trends with increasing cluster age, while the mixed r- and s-process elements (Mo, Pr, and Nd) have insignificant trends consistent with zero. Pr, Nd, Eu, Gd, and Dy have similar, slight (although mostly statistically significant) gradients of ~0.04dex/kpc. The mixed elements also appear to have nonlinear relationships with R_GC_.