- ID:
- ivo://CDS.VizieR/J/A+A/477/717
- Title:
- Spectroscopy of Type Ia supernovae
- Short Name:
- J/A+A/477/717
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a quantitative study of a new data set of high redshift Type Ia supernovae spectra, observed at the Gemini telescopes during the first 34 months of the Supernova Legacy Survey. During this time 123 supernovae candidates were observed, of which 87 have been identified as SNe Ia at a median redshift of z=0.720. Spectra from the entire second year of the survey and part of the third year (59 total SNe candidates with 46 confirmed SNe Ia) are published here for the first time. The spectroscopic measurements made on this data set are used determine if these distant SNe comprise a population similar to those observed locally. Rest-frame equivalent width and ejection velocity measurements are made on four spectroscopic features. Corresponding measurements are presented for a set of 167 spectra from 24 low-z SNe Ia from the literature.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/708/560
- Title:
- Spectroscopy of UMa II and Coma Ber
- Short Name:
- J/ApJ/708/560
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spectra of six metal-poor stars in two of the ultra-faint dwarf galaxies orbiting the Milky Way (MW), Ursa Major II, and Coma Berenices obtained with the Keck/High Resolution Echelle Spectrometer (HIRES). These observations include the first high-resolution spectroscopic observations of extremely metal-poor ([Fe/H]<-3.0) stars not belonging to the MW halo field star population. We obtain abundance measurements and upper limits for 26 elements between carbon and europium. The entire sample of stars spans a range of -3.2<[Fe/H]<-2.3, and we confirm that each galaxy contains a large intrinsic spread of Fe abundances. A comparison with MW halo stars of similar metallicities reveals substantial agreement between the abundance patterns of the ultra-faint dwarf galaxies and the MW halo for the light, {alpha}, and iron-peak elements (C to Zn). The abundances of neutron-capture elements (Sr to Eu) in the ultra-faint dwarf galaxies are extremely low, consistent with the most metal-poor halo stars, but not with the typical halo abundance pattern at [Fe/H]>~-3.0. Not only are our results broadly consistent with a galaxy formation model that predicts that massive dwarf galaxies are the source of the metal-rich component ([Fe/H]>-2.5) of the MW halo, but they also suggest that the faintest known dwarfs may be the primary contributors to the metal-poor end of the MW halo metallicity distribution.
- ID:
- ivo://CDS.VizieR/J/ApJ/749/124
- Title:
- Spectroscopy on LMC clusters
- Short Name:
- J/ApJ/749/124
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As part of an ongoing program to measure detailed chemical abundances in nearby galaxies, we use a sample of young- to intermediate-age clusters in the Large Magellanic Cloud with ages of 10Myr-2Gyr to evaluate the effect of isochrone parameters, specifically core convective overshooting, on Fe abundance results from high-resolution, integrated light spectroscopy. In this work we also obtain fiducial Fe abundances from high-resolution spectroscopy of the cluster individual member stars. We compare the Fe abundance results for the individual stars to the results from isochrones and integrated light spectroscopy to determine whether isochrones with convective overshooting should be used in our integrated light analysis of young- to intermediate-age (10Myr-3Gyr) star clusters. We find that when using the isochrones from the Teramo group, we obtain more accurate results for young- and intermediate-age clusters over the entire age range when using isochrones without convective overshooting. While convective overshooting is not the only uncertain aspect of stellar evolution, it is one of the most readily parameterized ingredients in stellar evolution models, and thus important to evaluate for the specific models used in our integrated light analysis. This work demonstrates that our method for integrated light spectroscopy of star clusters can provide unique tests for future constraints on stellar evolution models of young- and intermediate-age clusters.
- ID:
- ivo://CDS.VizieR/J/ApJS/220/16
- Title:
- SpeX NIR survey of 886 nearby M dwarfs
- Short Name:
- J/ApJS/220/16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of near-infrared (NIR) spectra and associated measurements for 886 nearby M dwarfs. The spectra were obtained with the NASA-Infrared Telescope Facility SpeX Spectrograph during a two-year observing campaign; they have high signal-to-noise ratios (S/N>100-150), span 0.8-2.4{mu}m, and have R~2000. Our catalog of measured values contains useful T_eff_ and composition-sensitive features, empirical stellar parameter measurements, and kinematic, photometric, and astrometric properties compiled from the literature. We focus on measurements of M dwarf abundances ([Fe/H] and [M/H]), capitalizing on the precision of recently published empirical NIR spectroscopic calibrations. We explore systematic differences between different abundance calibrations, and from other similar M dwarf catalogs. We confirm that the M dwarf abundances we measure show the expected inverse dependence with kinematic-, activity-, and color-based age indicators. Finally, we provide updated [Fe/H] and [M/H] for 16 M dwarf planet hosts. This catalog represents the largest published compilation of NIR spectra and associated parameters for M dwarfs. It provides a rich and uniform resource for nearby M dwarfs, and will be especially valuable for measuring Habitable Zone locations and comparative abundances of the M dwarf planet hosts that will be uncovered by upcoming exoplanet surveys.
- ID:
- ivo://CDS.VizieR/J/ApJ/633/174
- Title:
- Spheroidals and bulge dominated galaxies
- Short Name:
- J/ApJ/633/174
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive catalog of high signal-to-noise ratio spectra obtained with DEIMOS on the Keck II telescope for a sample of F850LP<22.43mag(AB) field spheroidal (E+S0 galaxies; 165) and bulge-dominated disk (61) galaxies in the redshift range 0.2<z<1.2, selected on the basis of visual morphology from the northern field of the Great Observatories Origins Deep Survey (GOODS-N). We discuss sample selection, photometric properties, and spectral reduction. We derive scale lengths, surface brightnesses, and photometric inhomogeneities from the ACS data and redshifts, stellar velocity dispersions, and [OII] and H{delta} equivalent widths from the Keck spectroscopy. Using the published 2Ms Chandra Deep Field-North X-ray catalog (Cat. <J/AJ/126/632>), we identify active galactic nuclei (AGNs) to clarify the origin of emission lines seen in the Keck spectra.
- ID:
- ivo://CDS.VizieR/J/ApJ/796/127
- Title:
- Spitzer h and {chi} Persei candidate members
- Short Name:
- J/ApJ/796/127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ~12500 members of the 14 Myr old Double Cluster, h and {chi} Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 {mu}m and 24 {mu}m, indicative of circumstellar dust. The frequency of stars with 8 {mu}m excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 {mu}m reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times ({tau}_0_) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ~1 Myr. Finally, 24 {mu}m excess frequencies for 4-6 M_{sun}_ stars appear lower than for 1-2.5 M_{sun}_ stars in other 10-30 Myr old clusters.
- ID:
- ivo://CDS.VizieR/J/ApJS/226/8
- Title:
- Spitzer/IRS survey of Class II objects in Orion A. I.
- Short Name:
- J/ApJS/226/8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present our investigation of 319 Class II objects in Orion A observed by Spitzer/IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10{mu}m silicate feature (F_11.3_/F_9.8_). (4) The 20-31{mu}m continuum spectral index tracks the projected distance from the most luminous Trapezium star, {theta}^1^ Ori C. A possible explanation is UV ablation of the outer parts of disks.
- ID:
- ivo://CDS.VizieR/J/AJ/145/66
- Title:
- Spitzer light curves of YSOs in IC 348
- Short Name:
- J/AJ/145/66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on synoptic observations at 3.6 and 4.5{mu}m of young stellar objects in IC 348 with 38epochs covering 40days. We find that among the detected cluster members, 338 at [3.6] and 269 at both [3.6] and [4.5], many are variable on daily to weekly timescales with typical fluctuations of ~0.1mag. The fraction of variables ranges from 20% for the diskless pre-main sequence stars to 60% for the stars still surrounded by infalling envelopes. We also find that stars in the exposed cluster core are less variable than the stars in the dense, slightly younger, southwestern ridge. This trend persists even after accounting for the underlying correlation with infrared spectral energy distribution type, suggesting that the change in variable fraction is not simply a reflection of the change in relative fraction of class I versus class II sources across the cloud, but instead reflects a change in variability with age. We also see a strong correlation between infrared variability and X-ray luminosity among the class II sources. The observed variability most likely reflects large changes in the structure of the inner wall located at the dust sublimation radius. We explore the possibility that these structural perturbations could be caused by a hot spot on the star heating dust above the sublimation temperature, causing it to evaporate rapidly, and increasing the inner radius for a portion of the disk. Under a number of simplifying assumptions we show that this model can reproduce the size and timescale of the 3.6 and 4.5{mu}m fluctuations. Regardless of its source, the infrared variability indicates that the inner disk is not a slowly evolving entity, but instead is a bubbling, warped, dented mass of gas and dust whose global size and shape fluctuate in a matter of days.
- ID:
- ivo://CDS.VizieR/J/ApJ/752/45
- Title:
- SPLASH: Stellar spectroscopy of M31 satellites
- Short Name:
- J/ApJ/752/45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a resolved star spectroscopic survey of 15 dwarf spheroidal (dSph) satellites of the Andromeda galaxy (M31). We filter foreground contamination from Milky Way (MW) stars, noting that MW substructure is evident in this contaminant sample. We also filter M31 halo field giant stars and identify the remainder as probable dSph members. We then use these members to determine the kinematical properties of the dSphs. For the first time, we confirm that And XVIII, XXI, and XXII show kinematics consistent with bound, dark-matter-dominated galaxies. From the velocity dispersions for the full sample of dSphs we determine masses, which we combine with the size and luminosity of the galaxies to produce mass-size-luminosity scaling relations. With these scalings we determine that the M31 dSphs are fully consistent with the MW dSphs, suggesting that the well-studied MW satellite population provides a fair sample for broader conclusions. We also estimate dark matter halo masses of the satellites and find that there is no sign that the luminosity of these galaxies depends on their dark halo mass, a result consistent with what is seen for MW dwarfs. Two of the M31 dSphs (And XV, XVI) have estimated maximum circular velocities smaller than 12 km/s (to 1{sigma}), which likely places them within the lowest-mass dark matter halos known to host stars (along with Bootes I of the MW). Finally, we use the systemic velocities of the M31 satellites to estimate the mass of the M31 halo, obtaining a virial mass consistent with previous results.
- ID:
- ivo://CDS.VizieR/J/ApJ/837/88
- Title:
- SPT-GMOS spectroscopy of gal. in massive clusters
- Short Name:
- J/ApJ/837/88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanning 0.28<z<1.08. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra -- 2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17+/-4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m<m^*^-0.5) cluster galaxies is 11+/-4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.