- ID:
- ivo://CDS.VizieR/J/ApJ/850/34
- Title:
- 3000-25000{AA} spectroscopy of nearby M dwarfs
- Short Name:
- J/ApJ/850/34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent studies of the stellar population in the solar neighborhood (<20pc) suggest that there are undetected white dwarfs (WDs) in multiple systems with main-sequence companions. Detecting these hidden stars and obtaining a more complete census of nearby WDs is important for our understanding of stellar and galactic evolution, as well as the study of explosive phenomena. In an attempt to uncover these hidden WDs, we present intermediate resolution spectroscopy over the wavelength range of 3000-25000{AA} of 101 nearby M dwarfs (dMs), observed with the Very Large Telescope X-Shooter spectrograph. For each star we search for a hot component superimposed on the dM spectrum. X-Shooter has excellent blue sensitivity and thus can reveal a faint hot WD despite the brightness of its red companion. Visual examination shows no clear evidence of a WD in any of the spectra. We place upper limits on the effective temperatures of WDs that may still be hiding by fitting dM templates to the spectra and modeling the WD spectra. On average our survey is sensitive to WDs hotter than about 5300K. This suggests that the frequency of WD companions of Teff>~5300K with separation of the order of <~50 au among the local dM population is <3% at the 95% confidence level.
« Previous |
1 - 10 of 215
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/636/A36
- Title:
- Absolute radial velocities of CARMENES M dwarfs
- Short Name:
- J/A+A/636/A36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- For years, the standard procedure to measure radial velocities (RVs) of spectral observations consisted in cross-correlating the spectra with a binary mask, that is, a simple stellar template that contains information on the position and strength of stellar absorption lines. The cross-correlation function (CCF) profiles also provide several indicators of stellar activity. We present a methodology to first build weighted binary masks and, second, to compute the CCF of spectral observations with these masks from which we derive radial velocities and activity indicators. These methods are implemented in a python code that is publicly available. To build the masks, we selected a large number of sharp absorption lines based on the profile of the minima present in high signal-to-noise ratio (S/N) spectrum templates built from observations of reference stars. We computed the CCFs of observed spectra and derived RVs and the following three standard activity indicators: full-width-at-half-maximum as well as contrast and bisector inverse slope. We applied our methodology to CARMENES high-resolution spectra and obtain RV and activity indicator time series of more than 300 M dwarf stars observed for the main CARMENES survey. Compared with the standard CARMENES template matching pipeline, in general we obtain more precise RVs in the cases where the template used in the standard pipeline did not have enough S/N. We also show the behaviour of the three activity indicators for the active star YZ CMi and estimate the absolute RV of the M dwarfs analysed using the CCF RVs.
- ID:
- ivo://CDS.VizieR/J/A+A/644/A68
- Title:
- Abundance signature of M dwarf stars
- Short Name:
- J/A+A/644/A68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Most of our current knowledge on planet formation is still based on the analysis of main-sequence, solar-type stars. Conversely, detailed chemical studies of large samples of M-dwarf planet hosts are still missing. We aim to test whether the correlations between the metallicity, individual chemical abundances, and mass of the star and the presence of different type of planets found for FGK stars still holds for the less massive M dwarf stars. Methods to determine in a consistent way stellar abundances of M dwarfs from high-resolution optical spectra are still missing. The present work is a first attempt to fill this gap. We analyse in a coherent and homogeneous way a large sample of M dwarfs with and without known planetary companions. We develop for the first time a methodology to determine stellar abundances of elements others than iron for M dwarf stars from high-resolution, optical spectra. Our methodology is based on the use of principal component analysis and sparse Bayesian's methods. We made use of a set of M dwarfs orbiting around an FGK primary with known abundances to train our methods. We applied our methods to derive stellar metallicities and abundances of a large sample of M dwarfs observed within the framework of current radial velocity surveys. We then used a sample of nearby FGK stars to cross-validate our technique by comparing the derived abundance trends in the M dwarf sample with those found on the FGK stars. The metallicity distribution of the different subsamples shows that M dwarfs hosting giant planets show a planet-metallicity correlation as well as a correlation with the stellar mass. M dwarfs hosting low-mass planets do not seem to follow the planet-metallicity correlation. We also found that the frequency of low-mass planets does not depend on the mass of the stellar host. These results seem in agreement with previous works. However, we note that for giant planet hosts our metallicities predict a weaker planet metallicity correlation but a stronger mass-dependency than photometric values. We show, for the first time, that there seems to be no differences in the abundance distribution of elements different from iron between M dwarfs with and without known planets. Our data shows that low-mass stars with planets follow the same metallicity, mass, and abundance trends than their FGK counterparts, which are usually explained within the framework of core-accretion models.
- ID:
- ivo://CDS.VizieR/J/A+A/652/A28
- Title:
- Activity indicators across the M dwarf domain
- Short Name:
- J/A+A/652/A28
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Stellar activity poses one of the main obstacles for the detection and characterisation of small exoplanets around cool stars, as it can induce radial velocity (RV) signals that can hide or mimic the presence of planetary companions. Several indicators of stellar activity are routinely used to identify activity-related signals in RVs, but not all indicators trace exactly the same activity effects, nor are any of them always effective in all stars. We evaluate the performance of a set of spectroscopic activity indicators for M dwarf stars with different masses and activity levels with the aim of finding a relation between the indicators and stellar properties. In a sample of 98 M dwarfs observed with CARMENES, we analyse the temporal behaviour of RVs and nine spectroscopic activity indicators: cross-correlation function (CCF) full-width-at-half-maximum (FWHM), CCF contrast, CCF bisector inverse slope (BIS), RV chromatic index (CRX), differential line width (dLW), and indices of the chromospheric lines H{alpha} and calcium infrared triplet. A total of 56 stars of the initial sample show periodic signals related to activity in at least one of these ten parameters. RV is the parameter for which most of the targets show an activity-related signal. CRX and BIS are effective activity tracers for the most active stars in the sample, especially stars with a relatively high mass, while for less active stars, chromospheric lines perform best. FWHM and dLW show a similar behaviour in all mass and activity regimes, with the highest number of activity detections in the low-mass, high-activity regime. Most of the targets for which we cannot identify any activity-related signals are stars at the low-mass end of the sample (i.e. with the latest spectral types). These low-mass stars also show the lowest RV scatter, which indicates that ultracool M dwarfs could be better candidates for planet searches than earlier types, which show larger RV jitter. Our results show that the spectroscopic activity indicators analysed behave differently, depending on the mass and activity level of the target star. This underlines the importance of considering different indicators of stellar activity when studying the variability of RV measurements. Therefore, when assessing the origin of an RV signal, it is critical to take into account a large set of indicators, or at least the most effective ones considering the characteristics of the star, as failing to do so may lead to false planet claims.
- ID:
- ivo://CDS.VizieR/J/A+A/531/A8
- Title:
- Activity indices and velocities for 890 stars
- Short Name:
- J/A+A/531/A8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work we present chromospheric activity indices, kinematics, radial-velocities, and rotational velocities for more than 850 FGK-type dwarfs and subgiant stars in the southern hemisphere and test how best to calibrate and measure S -indices from echelle spectra. We measured our parameters using the high-resolution and high-S/N FEROS echelle spectra acquired for this purpose. Results. We confirm the bimodal distribution of chromospheric activities for such stars and highlight the role that the more active K-dwarfs play in biasing the number of active stars. We show that the age-activity relationship does appear to continue to ages older than the Sun if we simply compare main sequence stars and subgiant stars with an offset of around 2.5Gyr between the peaks of both distributions. Also we show evidence of an increased spin-down timescale for cool K dwarfs compared with earlier F and G type stars. We highlight that activities drawn from low-resolution spectra (R<2.500') significantly increase the rms scatter when calibrating onto common systems of measurements like the Mt. Wilson system. Also we show that older and widely used catalogues of activities in the south appear to be offset compared to more recent works at the ~0.1dex level in logR'HK through calibrator drift. In addition, we show how kinematics can be used to preselect inactive stars for future planet search projects. We see the well known trend between projected rotational velocity and activity, however we also find a correlation between kinematic space velocity and chromospheric activity. It appears that after the Vaughan-Preston gap there is a quick step function in the kinematic space motion towards a significantly broader spread in velocities. We speculate on reasons for this correlation and provide some model scenarios to describe the bimodal activity distribution through magnetic saturation, residual low level gas accretion, or accretion by the star of planets or planetesimals. Finally, we provide a new empirical measurement for the disk-heating law, using the latest age-activity relationships to reconstruct the age-velocity distribution for local disk stars. We find a value of 0.337+/-0.045 for the exponent of this power law, in excellent agreement with those found using isochrone fitting methods and with theoretical disk-heating models.
- ID:
- ivo://CDS.VizieR/J/A+A/637/A13
- Title:
- AD Leo high resolution spectra
- Short Name:
- J/A+A/637/A13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Flares and coronal mass ejections (CMEs) are important for the evolution of the atmospheres of planets and their potential habitability, particularly for planets orbiting M stars at a distance <0.4AU. Detections of CMEs on these stars have been sparse, and previous studies have therefore modelled their occurrence frequency by scaling up solar relations. However, because the topology and strength of the magnetic fields on M stars is different from that of the Sun, it is not obvious that this approach works well. We used a large number of high-resolution spectra to study flares, CMEs, and their dynamics of the active M dwarf star AD Leo. The results can then be used as reference for other M dwarfs. We obtained more than 2000 high-resolution spectra (R~35000) of the highly active M dwarf AD Leo, which is viewed nearly pole on. Using these data, we studied the behaviour of the spectral lines H{alpha}, H{beta}, and HeI 5876 in detail and investigated asymmetric features that might be Doppler signatures of CMEs. We detected numerous flares. The largest flare emitted 8.32x10^31^erg in H{beta} and 2.12x10^32^erg in H{alpha}. Although the spectral lines in this and other events showed a significant blue asymmetry, the velocities associated with it are far below the escape velocity. Although AD Leo shows a high level of flare activity, the number of CMEs is relatively low. It is thus not appropriate to use the same flare-to-CME relation for M dwarfs as for the Sun.
- ID:
- ivo://CDS.VizieR/J/AJ/142/138
- Title:
- All-sky catalog of bright M dwarfs
- Short Name:
- J/AJ/142/138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an all-sky catalog of M dwarf stars with apparent infrared magnitude J<10. The 8889 stars are selected from the ongoing SUPERBLINK survey of stars with proper motion pm>40mas/yr, supplemented on the bright end with the Tycho-2 catalog.
- ID:
- ivo://CDS.VizieR/J/ApJ/708/1290
- Title:
- A 2MASS view of the Sgr dSph. VI.
- Short Name:
- J/ApJ/708/1290
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high-resolution spectroscopic measurements of the abundances of the {alpha} element titanium (Ti) and s-process elements yttrium (Y) and lanthanum (La) for 59 candidate M giant members of the Sagittarius (Sgr) dwarf spheroidal (dSph) + tidal tail system pre-selected on the basis of position and radial velocity (RV). As expected, the majority of these stars show peculiar abundance patterns compared to those of nominal Milky Way (MW) stars, but as a group, the stars form a coherent picture of chemical enrichment of the Sgr dSph from [Fe/H]=-1.4 to solar abundance. Finally, we analyze the chemical abundances of a moving group of M giants among the Sgr leading arm stars at the North Galactic Cap, but having RVs unlike the infalling Sgr leading arm debris there. Through use of "chemical fingerprinting," we conclude that these mostly receding northern hemisphere M giants also are Sgr stars, likely trailing arm debris overlapping the Sgr leading arm in the north.
- ID:
- ivo://CDS.VizieR/J/AJ/146/156
- Title:
- APOGEE M-dwarf survey. I. First year velocities
- Short Name:
- J/AJ/146/156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsini precision of ~2km/s and a measurement floor at vsini=4km/s. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ~100-200m/s), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50m/s for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.
- ID:
- ivo://CDS.VizieR/J/AJ/161/78
- Title:
- Astrometry for 14 debris disk stars with SPHERE
- Short Name:
- J/AJ/161/78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Debris disk stars are good targets for high-contrast imaging searches for planetary systems, since debris disks have been shown to have a tentative correlation with giant planets. We selected 20 stars identified as debris disk hosts by the WISE mission, with particularly high levels of warm dust. We observed these with the VLT/SPHERE high-contrast imaging instrument with the goal of finding planets and imaging the disks in scattered light. Our survey reaches a median 5{sigma} sensitivity of 10.4MJ at 25au and 5.9MJ at 100au. We identified three new stellar companions (HD18378B, HD19257B, and HD133778B): two are mid-M-type stars and one is a late-K or early-M star. Three additional stars have very widely separated stellar companions (all at >2000au) identified in the Gaia catalog. The stars hosting the three SPHERE-identified companions are all older (>~700Myr), with one having recently left the main sequence and one a giant star. We infer that the high volumes of dust observed around these stars has been caused by a recent collision between the planets and planetesimal belts in the system, although for the most evolved star, mass loss could also be responsible for the infrared excess. Future mid-infrared spectroscopy or polarimetric imaging may allow the positions and spatial extent of these dust belts to be constrained, thereby providing evidence as to the true cause of the elevated levels of dust around these old systems. None of the disks in this survey is resolved in scattered light.