- ID:
- ivo://CDS.VizieR/J/MNRAS/320/451
- Title:
- A-G star metallicity
- Short Name:
- J/MNRAS/320/451
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Edinburgh-Cape Blue Object Survey is an ongoing project to identify and analyse a large sample of hot stars selected initially on the basis of photographic colours (down to a magnitude limit (B~18.0) over the entire high-Galactic-latitude southern sky, and then studied with broad-band UBV photometry and medium-resolution spectroscopy. Due to unavoidable errors in the initial candidate selection, stars that are likely metal-deficient dwarfs and giants of the halo and thick-disc populations are inadvertently included, yet are of interest in their own right. In this paper we discuss a total of 206 candidate metal-deficient dwarfs, subgiants, giants, and horizontal-branch stars with photoelectric colours redder than (B-V)_0_=0.3, and with available spectroscopy. Radial velocities, accurate to ~10-15km/s, are presented for all of these stars. Spectroscopic metallicity estimates for these stars are obtained using a recently recalibrated relation between Ca II K-line strength and (B-V)_0_ colour. The identification of metal-poor stars from this colour-selection technique is remarkably efficient, and competitive with previous survey methods. An additional sample of 186 EC stars with photoelectric colours in the range -0.4<=(B-V)_0_<0.3, photoelectric colours in the range composed primarily of field horizontal-branch stars and other, higher gravity, A- and B-type stars, is also analysed. Estimates of the physical parameters T_eff_, log g and [Fe/H] are obtained for cooler members of this subsample, and a number of candidate RR Lyrae variables are identified.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/836/77
- Title:
- A library of high-S/N optical spectra of FGKM stars
- Short Name:
- J/ApJ/836/77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R~60000), high signal-to-noise ratio (S/N~150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ~M5-F1 (T_eff_~3000-7000K, R_*_~0.1-16R_{Sun}_). We also present "Empirical SpecMatch" (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100K in effective temperature (T_eff_), 15% in stellar radius (R_*_), and 0.09dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ~K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70K in T_eff_, 10% in R_*_, and 0.12dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available.
- ID:
- ivo://CDS.VizieR/J/A+A/647/A162
- Title:
- AMBRE catalogue of sulfur abundances
- Short Name:
- J/A+A/647/A162
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Sulfur is a volatile chemical element that plays an important role in tracing the chemical evolution of the Milky Way and external galaxies. However, its nucleosynthesis origin and abundance variations in the Galaxy are still unclear because the number of available stellar sulfur abundance measurements is currently rather small. The goal of the present article is to accurately and precisely study the sulfur content of large number of stars located in the solar neighbourhood. We use the parametrisation of thousands of high-resolution stellar spectra provided by the AMBRE Project, and combine it with the automated abundance determination GAUGUIN to derive local thermodynamic equilibrium (LTE) sulfur abundances for 1855 slow-rotating FGK-type stars. This is the largest and most precise catalogue of sulfur abundances published to date. It covers a metallicity domain as high as ~2.5dex starting at [M/H]<~-2.0dex. We find that the sulfur-to-iron abundances ratio is compatible with a plateau-like distribution in the metal-poor regime, and then starts to decrease continuously at [M/H]~-1.0dex. This decrease continues towards negative values for supersolar metallicity stars as recently reported for magnesium and as predicted by Galactic chemical evolution models. Moreover, sulfur-rich stars having metallicities in the range [-1.0,-0.5] have very different kinematical and orbital properties with respect to more metal-rich and sulfur-poor ones. Two disc components, associated with the thin and thick discs, are thus seen independently in kinematics and sulfur abundances. The sulfur radial gradients in the Galactic discs have also been estimated. Finally, the enrichment in sulfur with respect to iron is nicely correlated with stellar ages: older metal-poor stars have higher [S/M] ratios than younger metal-rich ones. This work has confirmed that sulfur is an {alpha}-element that could be considered to explore the Galactic populations properties. For the first time, a chemo-dynamical study from the sulfur abundance point of view, as a stand-alone chemical element, is performed.
- ID:
- ivo://CDS.VizieR/J/AJ/143/39
- Title:
- Analysis of hot Jupiters in Kepler Q2
- Short Name:
- J/AJ/143/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we present the results of searching the Kepler Q2 public data set for the secondary eclipses of 76 hot Jupiter planet candidates from the list of 1235 candidates published by Borucki et al., 2011, Cat. J/ApJ/736/19. This search has been performed by modeling both the Kepler pre-search data conditioned light curves and new light curves produced via our own photometric pipeline. We derive new stellar and planetary parameters for each system, while calculating robust errors for both. We find 16 systems with 1{sigma}-2{sigma}, 14 systems with 2{sigma}-3{sigma}, and 6 systems with >3{sigma} confidence level secondary eclipse detections in at least one light curve produced via the Kepler pre-search data conditioned light curve or our own pipeline; however, results can vary depending on the light curve modeled and whether eccentricity is allowed to vary or not. We estimate false alarm probabilities of 31%, 10%, and 6% for the 1{sigma}-2{sigma}, 2{sigma}-3{sigma}, and >3{sigma} confidence intervals, respectively.
- ID:
- ivo://CDS.VizieR/J/ApJ/725/200
- Title:
- An updated catalog of M31 globular-like clusters
- Short Name:
- J/ApJ/725/200
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an updated UBVRI photometric catalog containing 970 objects in the field of M31, selected from the Revised Bologna Catalog (RBC v.4.0), including 965, 967, 965, 953, and 827 sources in the individual UBVRI bands, respectively, of which 205, 123, 14, 126, and 109 objects do not have previously published photometry. Photometry is performed using archival images from the Local Group Galaxies Survey, which covers 2.2deg^2^ along the major axis of M31. Detailed comparisons show that our photometry is fully consistent with previous measurements in all filters. We focus on 445 confirmed "globular-like" clusters and candidates, comprising typical globular and young massive clusters. The ages and masses of these objects are derived by comparing their observed spectral-energy distributions with simple stellar population synthesis. Approximately half of the clusters are younger than 2Gyr, suggesting that there has been significant recent active star formation in M31, which is consistent with previous results.
- ID:
- ivo://CDS.VizieR/J/AJ/159/182
- Title:
- APOGEE Net, YSOs parameters through deep learning
- Short Name:
- J/AJ/159/182
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Machine learning allows for efficient extraction of physical properties from stellar spectra that have been obtained by large surveys. The viability of machine-learning approaches has been demonstrated for spectra covering a variety of wavelengths and spectral resolutions, but most often for main-sequence (MS) or evolved stars, where reliable synthetic spectra provide labels and data for training. Spectral models of young stellar objects (YSOs) and low-mass MS stars are less well-matched to their empirical counterparts, however, posing barriers to previous approaches to classify spectra of such stars. In this work, we generate labels for YSOs and low-mass MS stars through their photometry. We then use these labels to train a deep convolutional neural network to predict logg, Teff, and Fe/H for stars with Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra in the DR14 data set. This "APOGEE Net" has produced reliable predictions of logg for YSOs, with uncertainties of within 0.1dex and a good agreement with the structure indicated by pre-MS evolutionary tracks, and it correlates well with independently derived stellar radii. These values will be useful for studying pre-MS stellar populations to accurately diagnose membership and ages.
- ID:
- ivo://CDS.VizieR/J/AcA/59/137
- Title:
- ASAS Galactic fundamental mode RR Lyrae stars
- Short Name:
- J/AcA/59/137
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have analyzed 1455 fundamental mode RR Lyr stars of the Galactic field, using the All Sky Automated Survey (ASAS) data. The sample covers 75% of the sky and contains objects in the close neighborhood of the Sun, within 4kpc distance. Unlike in the previous analysis of the close field RRab stars, we see a clear manifestation of the Oosterhoff groups on the period-amplitude diagram. The relation for Oosterhoff I type variables becomes strongly flattened at large V amplitudes, which was not observed for globular cluster RR Lyr.
- ID:
- ivo://CDS.VizieR/J/AJ/158/227
- Title:
- Asteroseismic parameters of RGB stars
- Short Name:
- J/AJ/158/227
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Every Sun-like star will eventually evolve into a red giant, a transition which can profoundly affect the evolution of a surrounding planetary system. The timescale of dynamical planet evolution and orbital decay has important implications for planetary habitability, as well as post-main-sequence star and planet interaction, evolution, and internal structure. Here, we investigate these effects by estimating planet occurrence around 2476 low-luminosity red giant branch (LLRGB) stars observed by the NASA K2 mission. We measure stellar masses and radii using asteroseismology, with median random uncertainties of 3.7% in mass and 2.2% in radius. We compare this planet population to the known population of planets around dwarf Sun-like stars, accounting for detection efficiency differences between the stellar populations. We find that 0.49%+/-0.28% of LLRGB stars host planets larger than Jupiter with orbital periods less than 10 days, tentatively higher than main-sequence stars hosting similar planets (0.15%+/-0.06%). Our results suggest that the effects of stellar evolution on the occurrence of close-in planets larger than Jupiter are not significant until stars have begun ascending substantially up the red giant branch (>~5-6 R_{sun}_).
- ID:
- ivo://CDS.VizieR/J/ApJS/210/1
- Title:
- Asteroseismic study of solar-type stars
- Short Name:
- J/ApJS/210/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, T_eff_, were available for the entire ensemble from complementary photometry; spectroscopic estimates of T_eff_ and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogeneous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the individual frequency data is most important.
- ID:
- ivo://CDS.VizieR/J/AJ/131/1784
- Title:
- Astrometric Grid Giant Star Survey. I.
- Short Name:
- J/AJ/131/1784
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from a campaign of multiple-epoch echelle spectroscopy of relatively faint (V=9.5-13.5mag) red giants observed as potential astrometric grid stars for the Space Interferometry Mission (SIM PlanetQuest). Data are analyzed for 775 stars selected from the Grid Giant Star Survey, spanning a wide range of effective temperatures (Teff), gravities, and metallicities. The spectra are used to determine these stellar parameters and to monitor radial velocity (RV) variability at the 100m/s level.