PASTEL is a bibliographical catalogue compiling determinations of stellar atmospheric parameters. It provides (Teff, logg, [Fe/H]) determinations obtained from detailed analyses of high resolution, high signal to noise spectra, carried out with the help of model atmospheres. It also provides effective temperatures Teff from various methods. PASTEL is regularly updated. The catalogue supersedes the two previous versions of the [Fe/H] catalogue (Cayrel de Strobel et al., 1997 [Cat. III/200], 2001 [Cat. III/221]). PASTEL is regularly updated.
Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. To achieve a more extensive grasp on the substellar formation process, we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values were derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Our results show that as the mass of the substellar companion increases the metallicity of the host star tends to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host star's metallicity is found for systems with low-mass planets. We also confirm that more massive planets tend to orbit around more massive stars. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2 and 2M_{Jup}_. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.
The SEGUE K giant survey. II. Distances of 6036 stars
Short Name:
J/ApJ/784/170
Date:
21 Oct 2021
Publisher:
CDS
Description:
We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g-r)_0_ color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125kpc from the Galactic center, with 283 stars beyond 50kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.
We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.
The ~200000 targets monitored for photometric variability during the Kepler prime mission include the best-studied group of stars in the sky, due both to the extensive time history provided by Kepler and to the substantial amount of ancillary data provided by other investigators or compiled by the Kepler team. To complement this wealth of data, we surveyed the entire Kepler field using the 3.6 and 4.5{mu}m bands of the Warm Spitzer Space Telescope, obtaining photometry in both bands for almost 170000 objects. We demonstrate relative photometric precision ranging from better than ~1.5% for the brighter stars down to slightly greater than ~2% for the faintest stars monitored by Kepler. We describe the data collection and analysis phases of this work and identify several stars with large infrared excess, although none that is also known to be the host of an exoplanetary system.
Several large stellar spectroscopic surveys are producing overwhelming amounts of data that can be used for determining stellar atmospheric parameters and chemical abundances. Nonetheless, the accuracy achieved in the derived astrophysical parameters is still insufficient, mainly because of the paucity of adequate calibrators, particularly in the metal-poor regime ([Fe/H]<=-1.0). Our aim is to increase the number of metal-poor stellar calibrators that have accurate parameters. Here, we introduce the Titans metal-poor reference stars: a sample of 41 dwarf and subgiant stars with accurate, but model-dependent, parameters. Effective temperatures (Teff) were derived by fitting observed H{alpha} profiles with synthetic lines computed using three dimensional (3D) hydrodynamic model atmospheres that take into account departures from the local thermodynamic equilibrium (non-LTE effects). Surface gravities (logg) were computed using evolutionary tracks and parallaxes from Gaia early-data release 3. The same methods recover the Teff values of the Gaia benchmark stars, which are mostly based on interferometric measurements, with a 1{sigma} dispersion of 50K. We assume this to be the accuracy of the H{alpha} profiles computed from 3D non-LTE models for metal-poor dwarfs and subgiants, although this is likely an upper-bound estimate dominated by the uncertainty of the standard Teff values. We achieved an internal precision typically between 30-40K, these errors dominated by instrumental effects. The final total uncertainty for the Teff values of the Titans are thus estimated to be of the order of 1%. The typical error for logg is 0.04dex. In addition, we identified a few members of Gaia-Enceladus, of Sequoia, and of the Helmi stream in our sample. These stars can pave the way for the accurate chemical characterization of these Galactic substructures. Using the Titans as reference, large stellar surveys will be able to improve the internal calibration of their astrophysical parameters. Ultimately, this sample will help users of data from Gaia and large surveys in reaching their goal of redefining our understanding of stars, stellar systems, and the Milky Way.
The goal of the Turn-Off Primordial Stars survey (TOPoS) project is to find and analyse turn-off (TO) stars of extremely low metallicity. To select the targets for spectroscopic follow-up at high spectral resolution, we relied on low-resolution spectra from the Sloan Digital Sky Survey (SDSS). In this paper, we use the metallicity estimates we obtained from our analysis of the SDSS spectra to construct the metallicity distribution function (MDF) of the Milky Way, with special emphasis on its metal-weak tail. The goal is to provide the underlying distribution out of which the TOPoS sample was extracted. We made use of SDSS photometry, Gaia photometry, and distance estimates derived from the Gaia parallaxes to derive a metallicity estimate for a large sample of over 24 million TO stars. This sample was used to derive the metallicity bias of the sample for which SDSS spectra are available. We determined that the spectroscopic sample is strongly biased in favour of metal-poor stars, as intended. A comparison with the unbiased photometric sample allows us to correct for the selection bias. We selected a sub-sample of stars with reliable parallaxes for which we combined the SDSS radial velocities with Gaia proper motions and parallaxes to compute actions and orbital parameters in the Galactic potential. This allowed us to characterise the stars dynamically, and in particular to select a sub-sample that belongs to the Gaia-Sausage-Enceladus (GSE) accretion event. We are thus also able to provide the MDF of GSE. The metal-weak tail derived in our study is very similar to that derived in the H3 survey and in the Hamburg/ESO Survey. This allows us to average the three MDFs and provide an error bar for each metallicity bin. Inasmuch as the GSE structure is representative of the progenitor galaxy that collided with the Milky Way, that galaxy appears to be strongly deficient in metal-poor stars compared to the Milky Way, suggesting that the metal-weak tail of the latter has been largely formed by accretion of low-mass galaxies rather than massive galaxies, such as the GSE progenitor.
We present a deep and very spatially extended CTIO/DECam g and r photometric catalogue of point-sources (reaching out to ~2 magnitudes below the oldest main-sequence turn-off and covering ~20deg^2^) around the Sextans dwarf spheroidal galaxy, together with another catalogue of literature spectroscopic measurements (Walker et al., 2009, Cat. J/AJ/137/3100 and Battaglia et al., 2011, Cat. J/MNRAS/411/1013) with updated membership probabilities.
We present a comprehensive catalog of cool (period P>~2 yr) transiting planet candidates in the 4 yr light curves from the prime Kepler mission. Most of the candidates show only one or two transits and have largely been missed in the original Kepler Object of Interest catalog. Our catalog is based on all known such candidates in the literature, as well as new candidates from the search in this paper, and provides a resource to explore the planet population near the snow line of Sun-like stars. We homogeneously performed pixel-level vetting, stellar characterization with Gaia parallax and archival/Subaru spectroscopy, and light-curve modeling to derive planet parameters and to eliminate stellar binaries. The resulting clean sample consists of 67 planet candidates whose radii are typically constrained to 5%, in which 23 are newly reported. The number of Jupiter-sized candidates (29 with radius r>8 R_{Earth}_) in the sample is consistent with the Doppler occurrence. The smaller candidates are more prevalent (23 with 4<r/R_{Earth}_<8, 15 with r/R_{Earth}_<4) and suggest that long-period Neptune-sized planets are at least as common as the Jupiter-sized ones, although our sample is yet to be corrected for detection completeness. If the sample is assumed to be complete, these numbers imply the occurrence rate of 0.39+/-0.07 planets with 4<r/R_{Earth}_<14 and 2<P/yr<20 per FGK dwarf. The stars hosting candidates with r>4 R_{Earth}_ have systematically higher [Fe/H] than do the Kepler field stars, providing evidence that giant planet-metallicity correlation extends to P>2 yr.
We present new ultra-metal-poor stars parameters with [Fe/H] < -4.0 based on line-by-line non-local thermodynamic equilibrium (NLTE) abundances using an up-to-date iron model atom with a new recipe for non-elastic hydrogen collision rates. We study the departures from LTE in their atmospheric parameters and show that they can grow up to ~1.00dex in [Fe/H], ~150K in Teff and ~0.5dex in logg toward the lowest metallicities. Accurate NLTE atmospheric stellar parameters, in particular [Fe/H] being significantly higher, are the first step to eventually providing full NLTE abundance patterns that can be compared with Population III supernova nucleosynthesis yields to derive properties of the first stars. Overall, this maximizes the potential of these likely second-generation stars to investigate the early universe and how the chemical elements were formed.