- ID:
- ivo://CDS.VizieR/J/ApJ/717/277
- Title:
- Chemical composition of old LMC clusters
- Short Name:
- J/ApJ/717/277
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper presents the chemical abundance analysis of a sample of 18 giant stars in three old globular clusters in the Large Magellanic Cloud (LMC), NGC 1786, NGC 2210, and NGC 2257. The derived iron content is [Fe/H]=-1.75+/-0.01dex ({sigma}=0.02dex), -1.65+/-0.02dex ({sigma}=0.04dex), and -1.95+/-0.02dex ({sigma}=0.04dex) for NGC 1786, NGC 2210, and NGC 2257, respectively. All the clusters exhibit similar abundance ratios, with enhanced values (~+0.30dex) of [{alpha}/Fe], consistent with the Galactic halo stars, thus indicating that these clusters have formed from a gas enriched by Type II supernovae. We also found evidence that r-process is the main channel of production of the measured neutron capture elements (Y, Ba, La, Nd, Ce, and Eu). In particular, the quite large enhancement of [Eu/Fe] (~+0.70dex) found in these old clusters clearly indicates a relevant efficiency of the r-process mechanism in the LMC environment.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/706/1095
- Title:
- Chemical compositions of 26 outer halo stars
- Short Name:
- J/ApJ/706/1095
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including {alpha}-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results.
- ID:
- ivo://CDS.VizieR/J/ApJ/797/116
- Title:
- Chemical properties of M31 star clusters
- Short Name:
- J/ApJ/797/116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ages, [Fe/H] and abundances of the {alpha} elements CaI, SiI, TiI, TiII, and light elements MgI, NaI, and AlI for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5kpc<R_M31_<117kpc.
- ID:
- ivo://CDS.VizieR/J/A+A/634/A10
- Title:
- Chemo-kinematic properties of Aquarius
- Short Name:
- J/A+A/634/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dwarf galaxies found in isolation in the Local Group (LG) are unlikely to have interacted with the large LG spirals, and therefore environmental effects such as tidal and ram-pressure stripping should not be the main drivers of their evolution. We aim to provide insight into the internal mechanisms shaping LG dwarf galaxies by increasing our knowledge of the internal properties of isolated systems. Here we focus on the evolved stellar component of the Aquarius dwarf galaxy, whose kinematic and metallicity properties have only recently started to be explored. Spectroscopic data in the region of the near-infrared Ca~II triplet lines has been obtained with FORS2 at the Very Large Telescope for 53 red giant branch (RGB) stars. These data are used to derive line-of-sight velocities and [Fe/H] of the individual RGB stars. We have derived a systemic velocity of -142.2^+1.8^_-1.8_km/s, in agreement with previous determinations from both the HI gas and stars. The internal kinematics of Aquarius appears to be best modelled by a combination of random motions (l.o.s. velocity dispersion of 10.3^+1.6^_-1.3_km/s) and linear rotation (with a gradient -5.0^+1.6^_-1.9_km/s/arcmin) along a P.A.=139_-27_^+17^deg, broadly consistent with the optical projected major axis. This rotation signal is significantly misaligned or even counter-rotating to that derived from the HI gas. We also find the tentative presence of a mild negative metallicity gradient and indications that the metal-rich stars have a colder velocity dispersion than the metal-poor ones. This work represents a significant improvement with respect to previous measurements of the RGB stars of Aquarius, as it doubles the number of member stars already studied in the literature. We speculate that the misaligned rotation between the HI gas and evolved stellar component might have been the result of recent accretion of HI gas, or re-accretion after gas-loss due to internal stellar feedback.
- ID:
- ivo://CDS.VizieR/J/MNRAS/481/3244
- Title:
- Chemo-kinematics from MARVELS
- Short Name:
- J/MNRAS/481/3244
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Combining stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity, with barycentric radial velocity data provides insight into the chemo-dynamics of the Milky Way and our local Galactic environment. We analyse 3075 stars with spectroscopic data from the Sloan Digital Sky Survey III MARVELS radial velocity survey and present atmospheric parameters for 2343 dwarf stars using the spectral indices method, a modified version of the equivalent width method. We present barycentric radial velocities for a sample of 2610 stars with a median uncertainty of 0.3km/s. We determine stellar ages using two independent methods and calculate ages for 2335 stars with a maximum-likelihood isochronal age-dating method and for 2194 stars with a Bayesian age-dating method. Using previously published parallax data, we compute Galactic orbits and space velocities for 2504 stars to explore stellar populations based on kinematic and age parameters. This study combines good ages and exquisite velocities to explore local chemo-kinematics of the Milky Way, which complements many of the recent studies of giant stars with the APOGEE survey, and we find our results to be in agreement with current chemo-dynamical models of the Milky Way. Particularly, we find from our metallicity distributions and velocity-age relations of a kinematically defined thin disc that the metal-rich end has stars of all ages, even after we clean the sample of highly eccentric stars, suggesting that radial migration plays a key role in the metallicity scatter of the thin disc. All stellar parameters and kinematic data derived in this work are catalogued and published online in machine-readable form.
- ID:
- ivo://CDS.VizieR/J/ApJ/765/156
- Title:
- CH(G) index of SDSS evolved stars
- Short Name:
- J/ApJ/765/156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have measured the CH G band (CH(G)) index for evolved stars in the globular cluster M3 based on the Sloan Digital Sky Survey (SDSS) spectroscopic survey. It is found that there is a useful way to select red giant branch (RGB) stars from the contamination of other evolved stars such as asymptotic giant branch (AGB) and red horizontal branch (RHB) stars by using the CH(G) index versus (g-r)_0_ diagram if the metallicity is known from the spectra. When this diagram is applied to field giant stars with similar metallicity, we establish a calibration of CH(G)=1.625(g-r)_0_-1.174(g-r)^2^_0_-0.934. This method is confirmed by stars with [Fe/H]~-2.3 where spectra of member stars in globular clusters M15 and M92 are available in the SDSS database. We thus extend this kind of calibration to every individual metallicity bin ranging from [Fe/H]~-3.0 to [Fe/H]~0.0 by using field red giant stars with 0.4<=(g-r)_0_<=1.0. The metallicity-dependent calibrations give CH(G)=1.625(g-r)_0_-1.174(g-r)^2^_0_+0.060[Fe/H]-0.830 for -3.0<[Fe/H]<=-1.2 and CH(G)=0.953(g-r)_0_-0.655(g-r)^2^_0_+0.060[Fe/H]-0.650 for -1.2<[Fe/H]<0.0. The calibrations are valid for the SDSS spectroscopic data set, and they cannot be applied blindly to other data sets. With the two calibrations, a significant number of the contaminating stars (AGB and RHB stars) were excluded and thus a clear sample of red giant stars is obtained by selecting stars within +/-0.05mag of the calibration. The sample is published online and it is expected that this large and clean sample of RGB stars will provide new information on the formation and evolution of the Galaxy.
- ID:
- ivo://CDS.VizieR/J/MNRAS/298/332
- Title:
- Chromospheric activity-age relation
- Short Name:
- J/MNRAS/298/332
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We show that there is a relationship between the age excess, defined as the difference between the stellar isochrone and chromospheric ages, and the metallicity as measured by the index [Fe/H] for late-type dwarfs. The chromospheric age tends to be lower than the isochrone age for metal-poor stars, and the opposite occurs for metal-rich objects. We suggest that this could be an effect of neglecting the metallicity dependence of the calibrated chromospheric emission-age relation. We propose a correction to account for this dependence. We also investigate the metallicity distributions of these stars, and show that there are distinct trends according to the chromospheric activity level. Inactive stars have a metallicity distribution which resembles the metallicity distribution of solar neighbourhood stars, while active stars appear to be concentrated in an activity strip on the log(R'_HK_)*[Fe/H] diagram. We provide some explanations for these trends, and show that the chromospheric emission-age relation probably has different slopes on the two sides of the Vaughan-Preston gap.
- ID:
- ivo://CDS.VizieR/J/ApJ/697/207
- Title:
- Cold stellar stream orbit fit
- Short Name:
- J/ApJ/697/207
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use velocity and metallicity information from Sloan Digital Sky Survey and Sloan Extension for Galactic Understanding and Exploration stellar spectroscopy to fit an orbit to the narrow 63{deg} stellar stream of Grillmair and Dionatos (GD; 2006ApJ...643L..17G). The stars in the stream have a retrograde orbit with eccentricity e=0.33 (perigalacticon of 14.4kpc and apogalacticon of 28.7kpc) and inclination approximately i~35{deg}. In the region of the orbit which is detected, it has a distance of about 7-11kpc from the Sun. Assuming a standard disk plus bulge and logarithmic halo potential for the Milky Way stars plus dark matter, the stream stars are moving with a large space velocity of approximately 276km/s at perigalacticon. Using this stream alone, we are unable to determine if the dark matter halo is oblate or prolate. The metallicity of the stream is [Fe/H]=-2.1+/-0.1. Observed proper motions for individual stream members above the main sequence turnoff are consistent with the derived orbit. None of the known globular clusters in the Milky Way have positions, radial velocities, and metallicities that are consistent with being the progenitor of the GD-1 stream.
- ID:
- ivo://CDS.VizieR/J/AJ/151/85
- Title:
- Companions to APOGEE stars. I.
- Short Name:
- J/AJ/151/85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In its three years of operation, the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed >14000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical radial velocity precision of ~100-200 m/s, APOGEE can probe systems with small separation companions down to a few Jupiter masses. Here we present initial results from a catalog of 382 of the most compelling stellar and substellar companion candidates detected by APOGEE, which orbit a variety of host stars in diverse Galactic environments. Of these, 376 have no previously known small separation companion. The distribution of companion candidates in this catalog shows evidence for an extremely truncated brown dwarf (BD) desert with a paucity of BD companions only for systems with a<0.1-0.2 AU, with no indication of a desert at larger orbital separation. We propose a few potential explanations of this result, some which invoke this catalog's many small separation companion candidates found orbiting evolved stars. Furthermore, 16 BD and planet candidates have been identified around metal-poor ([Fe/H]<-0.5) stars in this catalog, which may challenge the core accretion model for companions >10 M_Jup_. Finally, we find all types of companions are ubiquitous throughout the Galactic disk with candidate planetary-mass and BD companions to distances of ~6 and ~16 kpc, respectively.
- ID:
- ivo://CDS.VizieR/J/ApJ/792/119
- Title:
- Companions to nearby stars from Pan-STARRS 1
- Short Name:
- J/ApJ/792/119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of 57 wide (>5'') separation, low-mass (stellar and substellar) companions to stars in the solar neighborhood identified from Pan-STARRS 1 (PS1) data and the spectral classification of 31 previously known companions. Our companions represent a selective subsample of promising candidates and span a range in spectral type of K7-L9 with the addition of one DA white dwarf. These were identified primarily from a dedicated common proper motion search around nearby stars, along with a few as serendipitous discoveries from our Pan-STARRS 1 brown dwarf search. Our discoveries include 23 new L dwarf companions and one known L dwarf not previously identified as a companion. The primary stars around which we searched for companions come from a list of bright stars with well-measured parallaxes and large proper motions from the Hipparcos catalog (8583 stars, mostly A-K dwarfs) and fainter stars from other proper motion catalogs (79170 stars, mostly M dwarfs). We examine the likelihood that our companions are chance alignments between unrelated stars and conclude that this is unlikely for the majority of the objects that we have followed-up spectroscopically. We also examine the entire population of ultracool (>M7) dwarf companions and conclude that while some are loosely bound, most are unlikely to be disrupted over the course of ~10 Gyr. Our search increases the number of ultracool M dwarf companions wider than 300 AU by 88% and increases the number of L dwarf companions in the same separation range by 82%. Finally, we resolve our new L dwarf companion to HIP 6407 into a tight (0.13'', 7.4 AU) L1+T3 binary, making the system a hierarchical triple. Our search for these key benchmarks against which brown dwarf and exoplanet atmosphere models are tested has yielded the largest number of discoveries to date.