- ID:
- ivo://CDS.VizieR/J/A+A/571/A36
- Title:
- M dwarfs in b201 tile of VVV survey
- Short Name:
- J/A+A/571/A36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The intrinsically faint M dwarfs are the most numerous stars in the Galaxy, have main-sequence lifetimes longer than the Hubble time, and host some of the most interesting planetary systems known to date. Their identification and classification throughout the Galaxy is crucial to unraveling the processes involved in the formation of planets, stars, and the Milky Way. The ESO Public Survey VVV is a deep near-IR survey mapping the Galactic bulge and southern plane. The VVV b201 tile, located in the border area of the bulge, was specifically selected for the characterisation of M dwarfs. We used VISTA photometry to identify M dwarfs in the VVV b201 tile, to estimate their subtypes, and to search for transit-like light curves from the first 26 epochs of the survey.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/885/3
- Title:
- Membership in 12 stellar streams from DES
- Short Name:
- J/ApJ/885/3
- Date:
- 16 Mar 2022 11:34:00
- Publisher:
- CDS
- Description:
- We cross-match high-precision astrometric data from Gaia DR2 with accurate multiband photometry from the Dark Energy Survey (DES) DR1 to confidently measure proper motions for nine stellar streams in the DES footprint: Aliqa Uma, ATLAS, Chenab, Elqui, Indus, Jhelum, Phoenix, Tucana III, and Turranburra. We determine low-confidence proper-motion measurements for four additional stellar streams: Ravi, Wambelong, Willka Yaku, and Turbio. We find evidence for a misalignment between stream tracks and the systemic proper motion of streams that may suggest a systematic gravitational influence from the Large Magellanic Cloud (LMC). These proper motions, when combined with radial velocity measurements, will allow for detailed orbit modeling that can be used to constrain properties of the LMC and its effect on nearby streams, as well as global properties of the Milky Way's gravitational potential.
- ID:
- ivo://CDS.VizieR/J/A+A/563/A15
- Title:
- Metallicity and kinematics in Galactic bar
- Short Name:
- J/A+A/563/A15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We observe red clump stars in four fields along the Galactic bar major axis (l=10{deg}, -6{deg}, 6{deg} and b=0{deg}, plus a field at l=0{deg}, b=1{deg}) with low-resolution spectroscopy from FLAMES/GIRAFFE (setup LR08) at the VLT, observing around the CaII triplet. We developed robust methods to extract radial velocity and metallicity estimates from these low signal-to-noise spectra. Results have been derived by fixing atmospheric parameters typical of a red clump star (Teff=4750K, logg=2.5). For some targets, the metallicity could not be derived.
- ID:
- ivo://CDS.VizieR/J/MNRAS/494/396
- Title:
- Metallicity distribution in GC
- Short Name:
- J/MNRAS/494/396
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present stellar metallicity measurements of more than 600 late-type stars in the central 10pc of the Galactic Centre. Together with our previously published KMOS data, this data set allows us to investigate, for the first time, spatial variations of the nuclear star cluster's metallicity distribution. Using the integral-field spectrograph KMOS (VLT), we observed almost half of the area enclosed by the nuclear star cluster's effective radius. We extract spectra at medium spectral resolution and apply full spectral fitting utilizing the PHOENIX library of synthetic stellar spectra. The stellar metallicities range from [M/H]=-1.25dex to [M/H]>+0.3dex, with most of the stars having supersolar metallicity. We are able to measure an anisotropy of the stellar metallicity distribution. In the Galactic north, the portion of subsolar metallicity stars with [M/H]<0.0dex is more than twice as high as in the Galactic south. One possible explanation for different fractions of subsolar metallicity stars in different parts of the cluster is a recent merger event. We propose to test this hypothesis with high- resolution spectroscopy and by combining the metallicity information with kinematic data.
- ID:
- ivo://CDS.VizieR/J/MNRAS/464/194
- Title:
- Metallicity distribution in the GC
- Short Name:
- J/MNRAS/464/194
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Knowing the metallicity distribution of stars in the Galactic Centre has important implications for the formation history of the Milky Way nuclear star cluster. However, this distribution is not well known, and is currently based on a small sample of fewer than 100 stars. We obtained near-infrared K-band spectra of more than 700 late-type stars in the central 4pc^2^ of the Milky Way nuclear star cluster with the integral-field spectrograph KMOS (VLT). We analyse the medium-resolution spectra using a full-spectral fitting method employing the Gottingen spectral library of synthetic PHOENIX spectra. The derived stellar metallicities range from metal-rich [M/H]>+0.3dex to metal-poor [M/H]<-1.0dex, with a fraction of 5.2^+6.0^_-3.1_ per cent metal-poor ([M/H]<=-0.5dex) stars. The metal-poor stars are distributed over the entire observed field. The origin of metal-poor stars remains unclear. They could originate from infalling globular clusters. For the metal-rich stellar population ([M/H]>0dex), a globular cluster origin can be ruled out. As there is only a very low fraction of metal-poor stars in the central 4pc^2^ of the Galactic Centre, we believe that our data can discard a scenario in which the Milky Way nuclear star cluster is purely formed from infalling globular clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/703/2177
- Title:
- Metal-poor MS turnoff stars summary
- Short Name:
- J/ApJ/703/2177
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We identify 10 -- seven for the first time -- elements of cold halo substructure (ECHOS) in the volume within 17.5kpc of the Sun in the inner halo of the Milky Way. Our result is based on the observed spatial and radial velocity distribution of metal-poor main-sequence turnoff (MPMSTO) stars in 137 Sloan Extension for Galactic Understanding and Exploration lines of sight. We show that all of our detections are statistically significant and that we expect no false positives. These ECHOS represent the observable stellar debris of ancient merger events in the stellar accretion history of the Milky Way, and we use our detections and completeness estimates to infer a formal upper limit of 0.34^+0.02^_-0.02_ on the fraction of the MPMSTO population in the inner halo that belong to ECHOS.
- ID:
- ivo://CDS.VizieR/J/ApJ/794/58
- Title:
- Metal-poor stars in the thick disk of the Galaxy
- Short Name:
- J/ApJ/794/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A new set of very high signal-to-noise (S/N>100/1), medium-resolution (R~3000) optical spectra have been obtained for 302 of the candidate "weak-metal" stars selected by Bidelman & MacConnell (1973AJ.....78..687B, Cat. III/46). We use these data to calibrate the recently developed generalization of the Sloan Extension for Galactic Exploration and Understanding and Exploration (SEGUE) Stellar Parameter Pipeline, and obtain estimates of the atmospheric parameters (T_eff_, log g, and [Fe/H]) for these non-Sloan Digital Sky Survey/SEGUE data; we also obtain estimates of [C/Fe]. The new abundance measurements are shown to be consistent with available high-resolution spectroscopic determinations, and represent a substantial improvement over the accuracies obtained from the previous photometric estimates reported in Paper I of this series (Norris et al. 1985ApJS...58..463N). The apparent offset in the photometric abundances of the giants in this sample noted by several authors is confirmed by our new spectroscopy; no such effect is found for the dwarfs. The presence of a metal-weak thick-disk (MWTD) population is clearly supported by these new abundance data. Some 25% of the stars with metallicities -1.8<[Fe/H]<=-0.8 exhibit orbital eccentricities e<0.4, yet are clearly separated from members of the inner-halo population with similar metallicities by their location in a Lindblad energy versus angular momentum diagram. A comparison is made with recent results for a similar-size sample of Radial Velocity Experiment stars from Ruchti et al. (2010ApJ...721L..92R ; 2011ApJ...737....9R). We conclude, based on both of these samples, that the MWTD is real, and must be accounted for in discussions of the formation and evolution of the disk system of the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/882/27
- Title:
- Metal-poor stars with APF obs. II. MW halo stars
- Short Name:
- J/ApJ/882/27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work, we study the chemical compositions and kinematic properties of six metal-poor stars with [Fe/H]{<}-2.5 in the Galactic halo. From high-resolution (R~110000) spectroscopic observations obtained with the Lick/Automated Planet Finder, we determined individual abundances for up to 23 elements, to quantitatively evaluate our sample. We identify two carbon-enhanced metal-poor stars (J1630+0953 and J2216+0246) without enhancement in neutron-capture elements (CEMP-no stars), while the rest of our sample stars are carbon-intermediate. By comparing the light-element abundances of the CEMP stars with predicted yields from nonrotating zero-metallicity massive-star models, we find that the possible progenitors of J1630+0953 and J2216+0246 could be in the 13-25M_{sun}_ mass range, with explosion energies (0.3-1.8)x10^51^erg. In addition, the detectable abundance ratios of light and heavy elements suggest that our sample stars are likely formed from a well-mixed gas cloud, which is consistent with previous studies. We also present a kinematic analysis, which suggests that most of our program stars likely belong to the inner-halo population, with orbits passing as close as ~2.9kpc from the Galactic center. We discuss the implications of these results on the critical constraints on the origin and evolution of CEMP stars, as well as the nature of the Population III progenitors of the lowest-metallicity stars in our Galaxy.
- ID:
- ivo://CDS.VizieR/J/ApJ/764/L19
- Title:
- Methanol emission from the Galactic Center
- Short Name:
- J/ApJ/764/L19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of a widespread population of collisionally excited methanol J=4_-1_ to 3_0_E sources at 36.2GHz from the inner 66'x18' (160x43pc) of the Galactic center. This spectral feature was imaged with a spectral resolution of 16.6km/s taken from 41 channels of a Very Large Array continuum survey of the Galactic center region. The revelation of 356 methanol sources, most of which are maser candidates, suggests a large abundance of methanol in the gas phase in the Galactic center region. There is also spatial and kinematic correlation between SiO (2-1) and CH_3_OH emission from four Galactic center clouds: the +50 and +20km/s clouds and G0.13-0.13 and G0.25+0.01. The enhanced abundance of methanol is accounted for in terms of induced photodesorption by cosmic rays as they travel through a molecular core, collide, dissociate, ionize, and excite Lyman Werner transitions of H_2_. A time-dependent chemical model in which cosmic rays drive the chemistry of the gas predicts CH_3_OH abundance of 10^-8^ to 10^-7^ on a chemical timescale of 5x10^4^ to 5x10^5^ years. The average methanol abundance produced by the release of methanol from grain surfaces is consistent with the available data.
- ID:
- ivo://CDS.VizieR/J/MNRAS/462/1444
- Title:
- MHO catalogue for Cassiopeia and Auriga
- Short Name:
- J/MNRAS/462/1444
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the analysis of 35.5deg^2^ of images in the 1-0 S(1) line of H_2_ from the UK Widefield Infrared Survey for H_2_ (UWISH2) towards Cassiopeia and Auriga. We have identified 98 Molecular Hydrogen emission-line Objects (MHOs) driven by Young Stellar Objects, 60 per cent of which are bipolar outflows and all are new discoveries. We estimate that the UWISH2-extended emission object catalogue contains fewer than 2 per cent false positives and is complete at the 95 per cent level for jets and outflows brighter than the UWISH2 detection limit. We identified reliable driving source candidates for three quarters of the detected outflows, 40 per cent of which are associated with groups and clusters of stars. The driving source candidates are 20 per cent protostars, the remainder are Classical T-Tauri Stars. We also identified 15 new star cluster candidates near MHOs in the survey area. We find that the typical outflow identified in the sample has the following characteristics: the position angles are randomly orientated; bipolar outflows are straight within a few degrees; the two lobes are slightly asymmetrical in length and brightness; the length and brightness of the lobes are not correlated; typical time gaps between major ejections of material are 1-3 kyr, hence FU-Ori or EX-Ori eruptions are most likely not the cause of these, but we suggest MNors as a possible source. Furthermore, we find that outflow lobe length distributions are statistically different from the widely used total length distributions. There are a larger than expected number of bright outflows indicating that the flux distribution does not follow a power law.