- ID:
- ivo://CDS.VizieR/J/AJ/151/6
- Title:
- Spectroscopic and photometric properties of Tombaugh 1
- Short Name:
- J/AJ/151/6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster's properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaH{beta} photometry and high-resolution spectroscopy, we derive the cluster's reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y)=0.221+/-0.006 or E(B-V)=0.303+/-0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m_1_ and hk is [Fe/H]=-0.10+/-0.02, while a match to the Victoria-Regina Stromgren isochrones leads to an age of 0.95+/-0.10 Gyr and an apparent modulus of (m-M)=13.10+/-0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region between 9.5 and 12 kpc. Our study also shows that Cepheid XZ CMa is not a member of Tombaugh 1 and reveals that this Cepheid presents signs of barium enrichment, making it a probable binary star.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/601/A96
- Title:
- Spectroscopy of globular clusters
- Short Name:
- J/A+A/601/A96
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We test the performance of our analysis technique for integrated-light spectra by applying it to seven well-studied Galactic GCs that span a wide range of metallicities. Integrated-light spectra were obtained by scanning the slit of the UVES spectrograph on the ESO Very Large Telescope across the half-light diameters of the clusters. We modelled the spectra using resolved Hubble Space Telescope colour-magnitude diagrams (CMDs), as well as theoretical isochrones, in combination with standard stellar atmosphere and spectral synthesis codes. The abundances of Fe, Na, Mg, Ca, Ti, Cr, and Ba were compared with literature data for individual stars in the clusters. The typical differences between iron abundances derived from our integrated-light spectra and those compiled from the literature are less than 0.1 dex. A larger difference is found for one cluster (NGC 6752), and is most likely caused primarily by stochastic fluctuations in the numbers of bright red giants within the scanned area. As expected, the alpha-elements (Ca, Ti) are enhanced by about 0.3 dex compared to the Solar-scaled composition, while the [Cr/Fe] ratios are close to Solar. When using up-to-date line lists, our [Mg/Fe] ratios also agree well with literature data. Our [Na/Fe] ratios are, on average, 0.08-0.14 dex lower than average values quoted in the literature, and our [Ba/Fe] ratios may be overestimated by 0.20-0.35 dex at the lowest metallicities. We find that analyses based on theoretical isochrones give very similar results to those based on resolved CMDs. Overall, the agreement between our integrated-light abundance measurements and the literature data is satisfactory. Refinements of the modelling procedure, such as corrections for stellar evolutionary and non-LTE effects, might further reduce some of the remaining offsets.
- ID:
- ivo://CDS.VizieR/J/ApJ/735/L46
- Title:
- Spectroscopy of 64 K red giants
- Short Name:
- J/ApJ/735/L46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan telescopes, we present detailed elemental abundances for 20 red giant stars in the outer Galactic disk, located at Galactocentric distances between 9 and 13kpc. The outer disk sample is complemented with samples of red giants from the inner Galactic disk and the solar neighborhood, analyzed using identical methods. For Galactocentric distances beyond 10kpc, we only find chemical patterns associated with the local thin disk, even for stars far above the Galactic plane. Our results show that the relative densities of the thick and thin disks are dramatically different from the solar neighborhood, and we therefore suggest that the radial scale length of the thick disk is much shorter than that of the thin disk. We make a first estimate of the thick disk scale length of L_thick_=2.0kpc, assuming L_thin_=3.8kpc for the thin disk. We suggest that radial migration may explain the lack of radial age, metallicity, and abundance gradients in the thick disk, possibly also explaining the link between the thick disk and the metal-poor bulge.
- ID:
- ivo://CDS.VizieR/J/ApJ/703/1323
- Title:
- Spectroscopy of stars in the Galaxy's nuclear cluster
- Short Name:
- J/ApJ/703/1323
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the structure of the nuclear star cluster in the innermost 0.16pc of the Galaxy as measured by the number density profile of late-type giants. Using laser guide star adaptive optics in conjunction with the integral field spectrograph, OSIRIS, at the Keck II telescope, we are able to differentiate between the older, late-type (~1Gyr) stars, which are presumed to be dynamically relaxed, and the unrelaxed young (~6Myr) population. This distinction is crucial for testing models of stellar cusp formation in the vicinity of a black hole, as the models assume that the cusp stars are in dynamical equilibrium in the black hole potential. In the survey region, we classified 60 stars as early-type (O and early B; 22 newly identified) and 74 stars as late-type (K and M; 61 newly identified). We find that contamination from young stars is significant, with more than twice as many young stars as old stars in our sensitivity range (K'<15.5) within the central arcsecond.
- ID:
- ivo://CDS.VizieR/J/ApJ/691/1387
- Title:
- Spectroscopy of the Galactic bar. I.
- Short Name:
- J/ApJ/691/1387
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use Fabry-Perot absorption line imaging spectroscopy to measure radial velocities using the CaII line in 3360 stars toward three lines of sight in the Milky Way's bar: Baade's Window and offset position at (l,b)~(+/-5.0,-3.5{deg}). This sample includes 2488 bar red clump giants, 339 bar M/K-giants, and 318 disk main-sequence stars. We measure the first four moments of the stellar velocity distribution of the red clump giants, and find it to be symmetric and flat-topped. We also measure the line-of-sight average velocity and dispersion of the red clump giants as a function of distance in the bar.
- ID:
- ivo://CDS.VizieR/J/A+A/651/A104
- Title:
- Spiral arms Gaia EDR3
- Short Name:
- J/A+A/651/A104
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Using the astrometry and integrated photometry from the Gaia Early Data Release 3 (EDR3), we map the density variations in the distribution of young Upper Main Sequence (UMS) stars, open clusters and classical Cepheids in the Galactic disk within several kiloparsecs of the Sun. Maps of relative over/under-dense regions for UMS stars in the Galactic disk are derived, using both bivariate kernel density estimators and wavelet transformations. The resulting overdensity maps exhibit large-scale arches, that extend in a clumpy but coherent way over the entire sampled volume, indicating the location of the spiral arms segments in the vicinity of the Sun. Peaks in the UMS overdensity are well-matched by the distribution of young and intrinsically bright open clusters. By applying a wavelet transformation to a sample of classical Cepheids, we find that their overdensities possibly extend the spiral arm segments on a larger scale (~10kpc from the Sun). While the resulting map based on the UMS sample is generally consistent with previous models of the Sagittarius-Carina spiral arm, the geometry of the arms in the III quadrant (galactic longitudes 180{deg}<l<270{deg}) differs significantly from many previous models. In particular we find that our maps favour a larger pitch angle for the Perseus arm, and that the Local Arm extends into the III quadrant at least 4kpc past the Sun's position, giving it a total length of at least 8kpc.
- ID:
- ivo://CDS.VizieR/J/A+A/619/A50
- Title:
- Spiral potential of the Milky Way
- Short Name:
- J/A+A/619/A50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The location of young sources in the Galaxy suggests a four-armed spiral structure, whereas tangential points of spiral arms observed in the integrated light at infrared and radio wavelengths indicate that only two arms are massive. Variable extinction in the Galactic plane and high light-to-mass ratios of young sources make it difficult to judge the total mass associated with the arms outlined by such tracers. The current objective is to estimate the mass associated with the Sagittarius arm by means of the kinematics of the stars across it. Spectra of 1726 candidate B- and A-type stars within 3{deg} of the Galactic center (GC) were obtained with the FLAMES instrument at the VLT with a resolution of ~6000 in the spectral range of 396-457nm. Radial velocities were derived by least-squares fits of the spectra to synthetic ones. The final sample was limited to 1507 stars with either Gaia DR2 parallaxes or main-sequence B-type stars having reliable spectroscopic distances. The solar peculiar motion in the direction of the GC relative to the local standard of rest (LSR) was estimated to U_{sun}_=10.7+/-1.3km/s. The variation in the median radial velocity relative to the LSR as a function of distance from the sun shows a gradual increase from slightly negative values near the sun to almost 5km/s at a distance of around 4kpc. A sinusoidal function with an amplitude of 3.4+/-1.3km/s and a maximum at 4.0+/-0.6kpc inside the sun is the best fit to the data. A positive median radial velocity relative to the LSR around 1.8kpc, the expected distance to the Sagittarius arm, can be excluded at a 99% level of confidence. A marginal peak detected at this distance may be associated with stellar streams in the star-forming regions, but it is too narrow to be associated with a major arm feature. A comparison with test-particle simulations in a fixed galactic potential with an imposed spiral pattern shows the best agreement with a two-armed spiral potential having the Scutum-Crux arm as the next major inner arm. A relative radial forcing dFr~1.5% and a pattern speed in the range of 20-30km/s/kpc yield the best fit. The lack of a positive velocity perturbation in the region around the Sagittarius arm excludes it from being a major arm. Thus, the main spiral potential of the Galaxy is two-armed, while the Sagittarius arm is an inter-arm feature with only a small mass perturbation associated with it.
- ID:
- ivo://CDS.VizieR/J/other/RAA/18.146
- Title:
- Spiral structure of the Milky Way
- Short Name:
- J/other/RAA/18.1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The morphology and kinematics of the spiral structure of the Milky Way are long-standing problems in astrophysics. In this review we firstly summarize various methods with different tracers used to solve this puzzle. The astrometry of Galactic sources is gradually alleviating this difficult situation caused mainly by large distance uncertainties, as we can currently obtain accurate parallaxes (a few {mu}as) and proper motions (~1km/s) by using Very Long Baseline Interferometry (VLBI). On the other hand, the Gaia mission is providing the largest, uniform sample of parallaxes for O-type stars in the entire Milky Way. Based upon the VLBI maser and Gaia O-star parallax measurements, nearby spiral structures of the Perseus, Local, Sagittarius and Scutum Arms are determined in unprecedented detail. Meanwhile, we estimate fundamental Galactic parameters of the distance to the Galactic center, R_0_, to be 8.35+/-0.18kpc, and circular rotation speed at the Sun, {THETA}_0_, to be 240+/-10km/s. We found kinematic differences between O stars and interstellar masers: the O stars, on average, rotate faster, >8km/s than maser-traced high-mass star forming regions.
- ID:
- ivo://CDS.VizieR/J/A+A/569/A125
- Title:
- Spiral structure of the Milky Way
- Short Name:
- J/A+A/569/A125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have updated the catalogs of Galactic HII regions, giant molecular clouds (GMCs), and 6.7-GHz methanol masers to outline the spiral structure of our Galaxy. The related parameters have been collected and (re)calculated based on the data in the literature. In particular, for each spiral tracer, we list the photometric or trigonometric distance, and/or the solutions of the kinematic distance ambiguity (KDA) when available. The kinematic distances when adopted are calculated using a flat rotation curve with two sets of R_0_, {Theta}_0_, and solar motions, where one set is the IAU standard and the other is from the new observational results. The rotation curve of Brand & Blitz (1993, Cat. J/A+A/275/67) is also used to derive the kinematic distances.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A92
- Title:
- Spitzer/IRS analysis of the 30-micron sources
- Short Name:
- J/A+A/626/A92
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis and comparison of the 30{mu}m dust features seen in the Spitzer Space Telescope spectra of 207 carbon-rich asymptotic giant branch (AGB) stars, post-AGB objects, and planetary nebulae (PNe) located in the Milky Way, the Magellanic Clouds (MCs), or the Sagittarius dwarf spheroidal galaxy (Sgr dSph), which are characterised by different average metallicities. We investigated whether the formation of the 30{mu}m feature carrier may be a function of the metallicity. Through this study we expect to better understand the late stages of stellar evolution of carbon-rich stars in these galaxies. Our analysis uses the "Manchester method" as a basis for estimating the temperature of dust for the carbon-rich AGB stars and the PNe in our sample. For post-AGB objects we changed the wavelength ranges used for temperature estimation, because of the presence of the 21{mu}m feature on the short wavelength edge of the 30{mu}m feature. We used a black-body function with a single temperature deduced from the Manchester method or its modification to approximate the continuum under the 30{mu}m feature. We find that the strength of the 30{mu}m feature increases until dust temperature drops below 400K. Below this temperature, the large loss of mass and probably the self-absorption effect reduces the strength of the feature. During the post-AGB phase, when the intense mass-loss has terminated, the optical depth of the circumstellar envelope is smaller, and the 30{um}m feature becomes visible again, showing variety of values for post-AGB objects and PNe, and being comparable with the strengths of AGB stars. In addition, the AGB stars and post-AGB objects show similar values of central wavelengths - usually between 28.5 and 29.5{mu}m. However, in case of PNe the shift of the central wavelength towards longer wavelengths is visible. The normalised median profiles for AGB stars look uniformly for various ranges of dust temperature, and different galaxies. We analysed the profiles of post-AGB objects and PNe only within one dust temperature range (below 200K), and they were also similar in different galaxies. In the spectra of 17 PNe and five post-AGB objects we found the broad 16-24{mu}m feature. Two objects among the PNe group are the new detections: SMP LMC 51, and SMP LMC 79, whereas in the case of post-AGBs the new detections are: IRAS 05370-7019, IRAS 05537-7015, and IRAS 21546+4721. In addition, in the spectra of nine PNe we found the new detections of 16-18{mu}m feature. We also find that the Galactic post-AGB object IRAS 11339-6004 has a 21{mu}m emission. Finally, we have produced online catalogues of photometric data and Spitzer IRS spectra for all objects that show the 30{mu}m feature. These resources are available online for use by the community. The most important conclusion of our work is the fact that the formation of the 30{mu}m feature is affected by metallicity. Specifically that, as opposed to more metal-poor samples of AGB stars in the MCs, the feature is seen at lower mass-loss rates, higher temperatures, and has seen to be more prominent in Galactic carbon stars. The averaged feature (profile) in the AGB, post-AGB objects, and PNe seems unaffected by metallicity at least between a fifth and solar metallicity, but in the case of PNe it is shifted to significantly longer wavelengths.