- ID:
- ivo://CDS.VizieR/J/ApJ/708/758
- Title:
- Polarimetry of HH1-2 region
- Short Name:
- J/ApJ/708/758
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The HH 1-2 region in the L1641 molecular cloud was observed in the near-infrared (IR) J, H, and Ks bands, and imaging polarimetry was performed. Seventy-six point-like sources were detected in all three bands. The near-IR polarizations of these sources seem to be caused mostly by the dichroic extinction. Using a color-color diagram, reddened sources with little IR excess were selected to trace the magnetic field structure of the molecular cloud. The mean polarization position angle of these sources is about 111{deg}, which is interpreted as the projected direction of the magnetic field in the observed region of the cloud. The distribution of the polarization angle has a dispersion of about 11{deg}, which is smaller than what was measured in previous studies. This small dispersion gives a rough estimate of the strength of the magnetic field to be about 130uG and suggests that the global magnetic field in this region is quite regular and straight. In contrast, the outflows driven by young stellar objects in this region seem to have no preferred orientation. This discrepancy suggests that the magnetic field in the L1641 molecular cloud does not dictate the orientation of the protostars forming inside.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/603/584
- Title:
- Polarimetry toward Musca dark cloud
- Short Name:
- J/ApJ/603/584
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have used CCD imaging polarimetry to obtain linear polarization measurements of background stars toward the filamentary Musca dark cloud. We present a catalog of 2497 objects with polarization signal-to-noise ratio larger than 5. This allows us to build polarization maps to infer the detailed geometry of the local magnetic field. We show composite polarization maps along the cloud and explore general correlations of the polarimetric data with the morphology of the region. We find the overall field to be strikingly aligned with the projected small axis of the filamentary cloud. We detect a lower limit for the polarization across the cloud of ~2%, with an enhanced polarization of 6%-7% in the central region. We find evidence that the polarization pattern is altered in the inner regions, those associated with higher extinction.
- ID:
- ivo://CDS.VizieR/J/ApJ/720/1045
- Title:
- Polarimetry toward sightlines through ChaI
- Short Name:
- J/ApJ/720/1045
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained optical multi-band polarimetry toward sightlines through the Chamaeleon I cloud, particularly in the vicinity of the young B9/A0 star HD 97300. We show, in agreement with earlier studies, that the radiation field impinging on the cloud in the projected vicinity of the star is dominated by the flux from the star, as evidenced by a local enhancement in the grain heating. By comparing the differential grain heating with the differential change in the location of the peak of the polarization curve, we show that the grain alignment is enhanced by the increase in the radiation field. We also find a weak, but measurable, variation in the grain alignment with the relative angle between the radiation field anisotropy and the magnetic field direction. Such an anisotropy in the grain alignment is consistent with a unique prediction of modern radiative alignment torque theory and provides direct support for radiatively driven grain alignment.
- ID:
- ivo://CDS.VizieR/J/ApJ/650/945
- Title:
- Polarisation around filamentary dark cloud GF 9
- Short Name:
- J/ApJ/650/945
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New visible polarization data combined with existing IR and FIR polarization data are used to study how the magnetic field threading the filamentary molecular cloud GF 9 connects to larger structures in its general environment. When visible and NIR polarization data are combined, no evidence is found for a plateau in the polarization above extinction A_V_~1.3, as seen in dark clouds in Taurus. This lack of saturation effect suggests that even in the denser parts of GF 9 magnetic fields can be probed. The visible polarization is smooth and has a well-defined orientation. In the core region, the IR and FIR data are also well defined, but each with a different direction. A multiscale analysis of the magnetic field shows that on the scale of a few times the mean radial dimension of the molecular cloud, it is as if the magnetic field were blind to the spatial distribution of the filaments, while on smaller scales in the core region, multiwavelength polarimetry shows a rotation of the magnetic field lines in these denser phases. Finally, the Chandrasekhar and Fermi method is used to evaluate the magnetic field strength, indicating that the core region is approximately magnetically critical. A global interpretation suggests that in the core region an original poloidal field could have been twisted by a rotating elongated (core+envelope) structure. There is no evidence for turbulence, and ambipolar diffusion does not seem to be effective at the present time.
- ID:
- ivo://CDS.VizieR/J/ApJ/716/893
- Title:
- Polarisation at 850mu{m} in OMC-2 and OMC-3
- Short Name:
- J/ApJ/716/893
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The SCUBA polarized 850um thermal emission data of the OMC-2 region in Orion A are added to and homogeneously reduced with data already available in the OMC-3 region. The data set shows that OMC-2 is a region generally less polarized than OMC-3. Where coincident, most of the 850um polarization pattern is similar to that measured in 350um polarization data. Only 850um polarimetry data have been obtained in and around MMS7, FIR1 and FIR2, and in the region south of FIR6. A realignment of the polarization vectors with the filament can be seen near FIR1 in the region south of OMC-3. An analysis shows that the energy injected by CO outflows and H2 jets associated with OMC-2 and OMC-3 does not appear to alter the polarization patterns at a scale of the 14" resolution beam. A second-order structure function analysis of the polarization position angles shows that OMC-2 is a more turbulent region than OMC-3. OMC-3 appears to be a clear case of a magnetically dominated region with respect to the turbulence. However, for OMC-2 it is not clear that this is the case. A more in-depth analysis of five regions displayed along OMC-2/3 indicates a decrease of the mean polarization degree and an increase of the turbulent angular dispersion from north to south. A statistical analysis suggests the presence of two depolarization regimes in our maps: one regime including the effects of the cores, the other one excluding it.
- ID:
- ivo://CDS.VizieR/J/ApJ/604/717
- Title:
- Polarization in OMC 1/4
- Short Name:
- J/ApJ/604/717
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use extensive 350{mu}m polarimetry and continuum maps obtained with the Hertz polarimeter and SHARC II (Submillimeter High Angular Resolution Camera II) along with HCN and HCO+ spectroscopic data to trace the orientation of the magnetic field in the Orion A star-forming region. Using the polarimetry data, we find that the direction of the projection of the magnetic field in the plane of the sky relative to the orientation of the integral-shaped filament varies considerably as one moves from north to south. By combining the polarimetry and spectroscopic data, we were able to measure a set of average values for the inclination angle of the magnetic field relative to the line of sight. We also present polarimetry data for the OMC-4 region located some 13' south of OMC-1.
- ID:
- ivo://CDS.VizieR/J/MNRAS/476/4442
- Title:
- Polarization of seven MBM clouds stars
- Short Name:
- J/MNRAS/476/4442
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We made R-band polarization measurements of 234 stars towards the direction of the MBM 33-39 cloud complex. The distance of the MBM 33-39 complex was determined as 120+/-10pc using polarization results and near-infrared photometry from the 2MASS survey. The magnetic field geometry of the individual clouds inferred from our polarimetric results reveals that the field lines are in general consistent with the global magnetic field geometry of the region obtained from previous studies. This implies that the clouds in the complex are permeated by the interstellar magnetic field. Multi-wavelength polarization measurements of a few stars projected on to the complex suggest that the size of the dust grains in these clouds is similar to those found in the normal interstellar medium of the Milky Way. We studied a possible formation scenario of the MBM 33-39 complex by combining the polarization results from our study with those from the literature and by identifying the distribution of ionized, atomic and molecular (dust) components of material in the region.
- ID:
- ivo://CDS.VizieR/J/ApJ/741/21
- Title:
- Polarization of stars in Taurus
- Short Name:
- J/ApJ/741/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to A_V_~9mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82uG and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales (~2pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.
- ID:
- ivo://CDS.VizieR/J/ApJ/875/64
- Title:
- Polarization & photom. of stars toward LDN1225
- Short Name:
- J/ApJ/875/64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results based on the optical R-band observations of the polarization of 280 stars distributed toward the dark globule LDN1225. Parallaxes from Gaia data release 2 along with the polarization data of ~200 stars have been used to (a) constrain the distance of LDN 1225 as 830+/-83pc, (b) determine the contribution of interstellar polarization, and (c) characterize the dust properties and delineate the magnetic field (B-field) morphology of LDN 1225. We find that B-fields are more organized and exhibit a small dispersion of 12{deg}. Using the ^12^CO molecular line data from the Purple Mountain Observatory, along with the column density and dispersion in B-fields, we estimate the B-field strength to be ~56+/-10{mu}G, the ratio of magnetic to turbulent pressure to be ~3+/-2, and the ratio of mass to magnetic flux (in units of the critical value) to be <1. These results indicate the dominant role of B-fields in comparison to turbulence and gravity in rendering the cloud support. B-fields are aligned parallel to the low-density parts (traced by a ^12^CO map) of the cloud; in contrast, they are neither parallel nor perpendicular to the high-density core structures (traced by ^13^CO and C^18^O maps). LDN1225 hosts two 70{mu}m sources, which seem to be low-mass Class 0 sources. The ratio of total to selective extinction derived using optical and near-infrared photometric data is found to be anomalous (RV=3.4), suggesting the growth of dust grains in LDN 1225. The polarization efficiency of dust grains follows a power law with an index of -0.7, implying that optical polarimetry traces B-fields in the outer parts of the cloud.
- ID:
- ivo://CDS.VizieR/J/A+A/643/A61
- Title:
- Prestellar cores H2D+ and N2H+ maps
- Short Name:
- J/A+A/643/A61
- Date:
- 07 Mar 2022 07:18:04
- Publisher:
- CDS
- Description:
- The study of prestellar cores is critical as they set the initial conditions in star formation and determine the final mass of the stellar object. To date, several hypotheses are describing their gravitational collapse. Deriving the dynamical model that fits both the observed dust and the gas emission from such cores is therefore of great importance. We perform detailed line analysis and modelling of H_2_D^+^ 1_10_-1_11_ and N_2_H^+^ 4-3 emission at 372GHz, using 2'x2' maps (JCMT).Our goal is to test the most prominent dynamical models by comparing the modelled gas kinematics and spatial distribution (H_2_D^+^ and N_2_H^+^) with observations towards four prestellar (L1544, L183, L694-2, L1517B) and one protostellar core (L1521f). We fit the line profiles at all offsets showing emission using single Gaussian distributions. We investigate how the line parameters (V_LSR_, FWHM and T_A_*) change with offset, to examine the velocity field, the degree of non-thermal contributions to the line broadening, and the distribution of the material in these cores. To assess the thermal broadening, we derive the average gas kinetic temperature towards all cores using the non-LTE radiative transfer code RADEX. We perform a more detailed non-LTEradiative transfer modelling using RATRAN, where we compare the predicted spatial distribution and line profiles of H_2_D^+^ and N_2_H^+^ with observations towards all cores. To do so, we adopt the physical structure for each core predicted by three different dynamical models taken from literature: Quasi-Equilibrium Bonnor-Ebert Sphere (QE-BES), Singular Isothermal Sphere (SIS), and Larson-Penston (LP) flow. In addition, we compare these results to those of a static sphere, whose density and temperature profiles are based on the observed dust continuum. Lastly, we constrain the abundance profiles of H_2_D^+^ and N_2_H^+^ towards each core. We find that variable non-thermal contributions (variations by a factor of 2.5) are required to explain the observed line width of both H_2_D^+^ and N_2_H^+^, while the non-thermal contributions are found to be 50% higher for N_2_H^+^. The RADEX modelling results in average core column densities of ~9x10^12^cm^-2^ for H_2_D+and N_2_H^+^. The LP flow seems to be the dynamical model that can reproduce the observed spatial distribution and line profiles of H_2_D^+^ on a global scale of prestellar cores, while the SIS model systematically and significantly overestimates the width of the line profiles and underestimates the line peak intensity. We find similar abundance profiles for the prestellar cores and the protostellar core. The typical abundances of H_2_D^+^ vary between 10^-9^-10^-10^ for the inner 5000au, and drop by about an order of magnitude for the outer regions of the core (2x10^-10^-6x10^-11^). In addition, a higher N_2_H^+^ abundance by about a factor of 4 compared to H_2_D^+^ is found towards the two cores with detected emission. The presence ofN_2_H^+^ 4-3 towards the protostellar core and towards one of the prestellar cores reflects the increasing densities as the core evolves. Our analysis provides an updated picture of the physical structure of prestellar cores. Although the dynamical models account for mass differences by up to a factor of 7, the velocity structure drives the shape of the line profiles, allowing for a robust comparison between the models. We find that the SIS model can be cleary excluded in explaining the gas emission towards the cores,but a larger sample is required to differentiate clearly between the LP flow, the QE-BES and the static models. All models of collapse underestimate the intensity of the gas emission by up to several factors towards the only protostellar core in our sample, indicating that different dynamics take place in different evolutionary core stages. If the LP model is confirmed towards a larger sample of prestellarcores, it would indicate that they may form by compression or accretion of gas from larger scales. If the QE-BES model is confirmed, it means that quasi hydrostatic cores can exist within turbulent ISM.