- ID:
- ivo://CDS.VizieR/J/ApJ/882/40
- Title:
- Lanthanide fraction distribution of metal-poor stars
- Short Name:
- J/ApJ/882/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Multimessenger observations of the neutron star merger GW170817 and its kilonova proved that neutron star mergers can synthesize large quantities of r-process elements. If neutron star mergers in fact dominate all r-process element production, then the distribution of kilonova ejecta compositions should match the distribution of r-process abundance patterns observed in stars. The lanthanide fraction (X_La_) is a measurable quantity in both kilonovae and metal-poor stars, but it has not previously been explicitly calculated for stars. Here we compute the lanthanide fraction distribution of metal-poor stars ([Fe/H]{<}-2.5) to enable comparison to current and future kilonovae. The full distribution peaks at log X_La_~-1.8, but r-process-enhanced stars ([Eu/Fe]>0.7) have distinctly higher lanthanide fractions: logX_La_>~-1.5. We review observations of GW170817 and find general consensus that the total logX_La_=-2.2+/-0.5, somewhat lower than the typical metal-poor star and inconsistent with the most highly r-enhanced stars. For neutron star mergers to remain viable as the dominant r-process site, future kilonova observations should be preferentially lanthanide-rich (including a population of ~10% with logX_La_>-1.5). These high-X_La_ kilonovae may be fainter and more rapidly evolving than GW170817, posing a challenge for discovery and follow-up observations. Both optical and (mid-)infrared observations will be required to robustly constrain kilonova lanthanide fractions. If such high-X_La_ kilonovae are not found in the next few years, that likely implies that the stars with the highest r-process enhancements have a different origin for their r-process elements.
1 - 4 of 4
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/853/150
- Title:
- Spectral analysis of low-mass X-ray binaries
- Short Name:
- J/ApJ/853/150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A recent study of a small sample of X-ray binaries (XRBs) suggests a significant softening of spectra of neutron star (NS) binaries as compared to black hole (BH) binaries in the luminosity range 10^34^-10^37^erg/s. This softening is quantified as an anticorrelation between the spectral index and the 0.5-10keV X-ray luminosity. We extend the study to significantly lower luminosities (i.e., ~a few x10^30^erg/s) for a larger sample of XRBs. We find evidence for a significant anticorrelation between the spectral index and the luminosity for a group of NS binaries in the luminosity range 10^32^-10^33^erg/s. Our analysis suggests a steep slope for the correlation i.e., -2.12+/-0.63. In contrast, BH binaries do not exhibit the same behavior. We examine the possible dichotomy between NS and BH binaries in terms of a Comptonization model that assumes a feedback mechanism between an optically thin hot corona and an optically thick cool source of soft photons. We gauge the NS-BH dichotomy by comparing the extracted corona temperatures, Compton-y parameters, and the Comptonization amplification factors: the mean temperature of the NS group is found to be significantly lower than the equivalent temperature for the BH group. The extracted Compton-y parameters and the amplification factors follow the theoretically predicted relation with the spectral index.
- ID:
- ivo://CDS.VizieR/J/PASJ/70/28
- Title:
- Subaru HSC counterpart candidates of GW170817
- Short Name:
- J/PASJ/70/28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We perform a z-band survey for an optical counterpart of the binary neutron star coalescence GW170817 with Subaru/Hyper Suprime-Cam. Our untargeted transient search covers 23.6deg^2^ corresponding to the 56.6% credible region of GW170817 and reaches the 50% completeness magnitude of 20.6mag on average. As a result, we find 60 candidate extragalactic transients, including J-GEM17btc (also known as SSS17a/DLT17ck). While J-GEM17btc is associated with NGC 4993, which is firmly located inside the 3D skymap of GW170817, the other 59 candidates do not have distance information in the GLADE v2 catalog or NASA/IPAC Extragalactic Database. Among 59 of the candidates, 58 are located at the center of extended objects in the Pan-STARRS1 catalog, while one candidate has an offset. We present location, z-band apparent magnitude, and time variability of the candidates and evaluate the probabilities that they are located within the 3D skymap of GW170817. The probability for J-GEM17btc is 64%, which is much higher than for the other 59 candidates (9.3x10^-3^-2.1x10^-1^%). Furthermore, the possibility that at least one of the other 59 candidates is located within the 3D skymap is only 3.2%. Therefore, we conclude that J-GEM17btc is the most likely and distinguished candidate to be the optical counterpart of GW170817.
- ID:
- ivo://CDS.VizieR/J/ApJS/245/19
- Title:
- Thermonuclear burst oscillations (TBOs) with RXTE
- Short Name:
- J/ApJS/245/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe a blind uniform search for thermonuclear burst oscillations (TBOs) in the majority of Type I bursts observed by the Rossi X-ray Timing Explorer (RXTE) (2118 bursts from 57 neutron stars). We examined 2-2002Hz power spectra from the Fourier transform in sliding 0.5-2s windows, using fine-binned light curves in the 2-60keV energy range. The significance of the oscillation candidates was assessed by simulations which took into account light-curve variations, dead time, and the sliding time windows. Some of our sources exhibited multi-frequency variability at <~15Hz that cannot be readily removed with light-curve modeling and may have an astrophysical (non-TBO) nature. Overall, we found that the number and strength of potential candidates depends strongly on the parameters of the search. We found candidates from all previously known RXTE TBO sources, with pulsations that had been detected at similar frequencies in multiple independent time windows, and discovered TBOs from SAXJ1810.8-2658. We could not confirm most previously reported tentative TBO detections or identify any obvious candidates just below the detection threshold at similar frequencies in multiple bursts. We computed fractional amplitudes of all TBO candidates and placed upper limits on non-detections. Finally, for a few sources we noted a small excess of candidates with powers comparable to fainter TBOs, but appearing in single independent time windows at random frequencies. At least some of these candidates may be noise spikes that appear interesting due to selection effects. The potential presence of such candidates calls for extra caution if claiming single-window TBO detections.