- ID:
- ivo://CDS.VizieR/J/A+A/575/A4
- Title:
- Activity and accretion in {gamma} Vel and Cha I
- Short Name:
- J/A+A/575/A4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of Gamma Vel and Cha I among the UVES and GIRAFFE spectroscopic observations. A total of 140 Gamma Vel members and 74 Cha I members were studied. The procedure adopted by the GES to derive stellar fundamental parameters provided also measures of the projected rotational velocity (vsini). We calculated stellar luminosities through spectral energy distributions, while stellar masses were derived by comparison with evolutionary tracks. The spectral subtraction of low-activity and slowly rotating templates, which are rotationally broadened to match the vsini of the targets, enabled us to measure the equivalent widths (EWs) and the fluxes in the H{alpha} and H{beta} lines. The H{alpha} line was also used for identifying accreting objects, on the basis of its equivalent width and the width at the 10% of the line peak (10%W), and for evaluating the mass accretion rate (M_acc_). The distribution of vsini for the members of Gamma Vel displays a peak at about 10km/s with a tail toward faster rotators. There is also some indication of a different vsini distribution for the members of its two kinematical populations. Most of these stars have H{alpha} fluxes corresponding to a saturated activity regime. We find a similar distribution, but with a narrower peak, for Cha I. Only a handful of stars in Gamma Vel display signatures of accretion, while many more accretors were detected in the younger Cha I, where the highest H{alpha} fluxes are mostly due to accretion, rather than to chromospheric activity. Accreting and active stars occupy two different regions in a T_eff-flux diagram and we propose a criterion for distinguishing them. We derive M_acc in the ranges 10^-11^-10^-9^M_{sun}_/yr and 10^-10^-10^-7^M_{sun}_/yr for Gamma Vel and Cha I accretors, respectively.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/795/161
- Title:
- Activity and rotation in Praesepe and the Hyades
- Short Name:
- J/ApJ/795/161
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star's lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at ~600 Myr. We have compiled a sample of 720 spectra - more than half of which are new observations - for 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have also collected rotation periods (P_rot_) for 135 Praesepe members and 87 Hyads. To compare H{alpha} emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number R_o_, we first calculate an expanded set of {chi} values, with which we can obtain the H{alpha} to bolometric luminosity ratio, L_H{alpha}_/L_bol_, even when spectra are not flux-calibrated and/or stars lack reliable distances. Our {chi} values cover a broader range of stellar masses and colors (roughly equivalent to spectral types from K0 to M9), and exhibit better agreement between independent calculations, than existing values. Unlike previous authors, we find no difference between the two clusters in their H{alpha} equivalent width or L_H{alpha}_/L_bol_ distributions, and therefore take the merged H{alpha} and P_rot_ data to be representative of 600 Myr old stars. Our analysis shows that H{alpha} activity in these stars is saturated for R_O_<=0.11\-0.03_^+0.02^. Above that value activity declines as a power-law with slope {beta}=0.73_-0.12_^+0.16^, before dropping off rapidly at R_o_{approx} 0.4. These data provide a useful anchor for calibrating the age-activity-rotation relation beyond 600 Myr.
- ID:
- ivo://CDS.VizieR/J/ApJ/697/1578
- Title:
- A debris disk study of Praesepe
- Short Name:
- J/ApJ/697/1578
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 24um photometry of the intermediate-age open cluster Praesepe. We assemble a catalog of 193 probable cluster members that are detected in optical databases, the Two Micron All Sky Survey (2MASS), and at 24um, within an area of ~2.47deg^2^. Mid-IR excesses indicating debris disks are found for one early-type and for three solar-type stars. Corrections for sampling statistics yield a 24um excess fraction (debris disk fraction) of 6.5%+/-4.1% for luminous and 1.9%+/-1.2% for solar-type stars. The incidence of excesses is in agreement with the decay trend of debris disks as a function of age observed for other cluster and field stars.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A35
- Title:
- A 3D view of the Hyades population
- Short Name:
- J/A+A/623/A35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Our scientific goal is to provide a 3D map of the nearest open cluster to the Sun, the Hyades, combining the recent release of Gaia astrometric data, ground-based parallaxes of sub-stellar member candidates and photometric data from surveys which cover large areas of the cluster. We combined the second Gaia release with ground-based H-band parallaxes obtained with the infrared camera on the 2-m robotic Liverpool telescope to astrometrically identify stellar and sub-stellar members of the Hyades, the nearest open cluster to the Sun. We find 1764 objects within 70 degree radius from the cluster center from the Gaia second data release, whose kinematic properties are consistent with the Hyades. We limit our study to 30pc from the cluster center (47.03+/-0.20pc) where we identify 710 candidate members, including 85 and 385 in the core and tidal radius, respectively. We determine proper motions and parallaxes of eight candidate brown dwarf members and confirm their membership. Using the 3D positions and a model-based mass-luminosity relation we derive a luminosity and mass function in the 0.04 to 2.5M_{sun}_ range. We confirm evidence for mass segregation in the Hyades and find a dearth of brown dwarfs in the core of the cluster. From the white dwarf members we estimate an age of 640^+67^_-49_Myr. We identify a list of members in the Hyades cluster from the most massive stars down to the brown dwarfs. We produce for the first time a 3D map of the Hyades cluster in the stellar and sub-stellar regimes and make available the list of candidate members.
- ID:
- ivo://CDS.VizieR/J/A+A/639/A127
- Title:
- Age-chemical-clocks-metallicity relations
- Short Name:
- J/A+A/639/A127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In the era of large spectroscopic surveys, massive databases of high-quality spectra coupled with the products of the Gaia satellite provide tools to outline a new picture of our Galaxy. In this framework, an important piece of information is provided by our ability to infer stellar ages, and consequently to sketch a Galactic timeline. We aim to provide empirical relations between stellar ages and abundance ratios for a sample of stars with very similar stellar parameters to those of the Sun, namely the so-called solar-like stars. We investigate the dependence on metallicity, and we apply our relations to independent samples, that is, the Gaia-ESO samples of open clusters and of field stars. We analyse high-resolution and high-signal-to-noise-ratio HARPS spectra of a sample of solar-like stars to obtain precise determinations of their atmospheric parameters and abundances for 25 elements and/or ions belonging to the main nucleosynthesis channels through differential spectral analysis, and of their ages through isochrone fitting. We investigate the relations between stellar ages and several abundance ratios. For the abundance ratios with a steeper dependence on age, we perform multivariate linear regressions, in which we include the dependence on metallicity, [Fe/H]. We apply our best relations to a sample of open clusters located from the inner to the outer regions of the Galactic disc. Using our relations, we are able to recover the literature ages only for clusters located at R_GC_>7kpc. The values that we obtain for the ages of the inner-disc clusters are much greater than the literature ones. In these clusters, the content of neutron capture elements, such as Y and Zr, is indeed lower than expected from chemical evolution models, and consequently their [Y/Mg] and [Y/Al] are lower than in clusters of the same age located in the solar neighbourhood. With our chemical evolution model and a set of empirical yields, we suggest that a strong dependence on the star formation history and metallicity-dependent stellar yields of s-process elements can substantially modify the slope of the [s/{alpha}]-[Fe/H]-age relation in different regions of the Galaxy. Our results point towards a non-universal relation [s/{alpha}]-[Fe/H]-age, indicating the existence of relations with different slopes and intercepts at different Galactocentric distances or for different star formation histories. Therefore, relations between ages and abundance ratios obtained from samples of stars located in a limited region of the Galaxy cannot be translated into general relations valid for the whole disc. A better understanding of the s-process at high metallicity is necessary to fully understand the origin of these variations.
- ID:
- ivo://CDS.VizieR/J/ApJ/787/108
- Title:
- Age estimates for massive SFR stellar populations
- Short Name:
- J/ApJ/787/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age_JX_. Stellar masses are derived from X-ray luminosities using the L_X_-M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age_JX_ is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud to widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age_JX_ method has been applied to 5525 out of 31784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age_JX_ ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J-H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/787/109
- Title:
- Age estimates for NGC 2024 and ONC stars
- Short Name:
- J/ApJ/787/109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age_JX_, derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024 cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age_JX_ estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A108
- Title:
- Age of 269 GDR2 open clusters
- Short Name:
- J/A+A/623/A108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Gaia Second Data Release provides precise astrometry and photometry for more than 1.3 billion sources. This catalog opens a new era concerning the characterization of open clusters and test stellar models, paving the way for better understanding of the disk properties. The aim of the paper is to improve the knowledge of cluster parameters, using only the unprecedented quality of the Gaia photometry and astrometry. We have made use of the membership determination based on the precise Gaia astrometry and photometry. We applied an automated Bayesian tool, BASE-9, to fit stellar isochrones on the observed G, GBP, GRP magnitudes of the high probability member stars. We derive parameters such as age, distance modulus, and extinction for a sample of 269 open clusters, selecting only low reddening objects and discarding very young clusters, for which techniques other than isochrone-fitting are more suitable for estimating ages.
- ID:
- ivo://CDS.VizieR/J/ApJ/751/122
- Title:
- Ages and masses for 920 LMC clusters
- Short Name:
- J/ApJ/751/122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new age and mass estimates for 920 stellar clusters in the Large Magellanic Cloud (LMC) based on previously published broadband photometry and the stellar cluster analysis package, MASSCLEANage. Expressed in the generic fitting formula, d^2^N/dMdt{prop.to}M^{alpha}^t^{beta}^, the distribution of observed clusters is described by {alpha}=-1.5 to -1.6 and {beta}=-2.1 to -2.2. For 288 of these clusters, ages have recently been determined based on stellar photometric color-magnitude diagrams, allowing us to gauge the confidence of our ages. The results look very promising, opening up the possibility that this sample of 920 clusters, with reliable and consistent age, mass, and photometric measures, might be used to constrain important characteristics about the stellar cluster population in the LMC. We also investigate a traditional age determination method that uses a {chi}^2^ minimization routine to fit observed cluster colors to standard infinite-mass limit simple stellar population models. This reveals serious defects in the derived cluster age distribution using this method. The traditional {chi}^2^ minimization method, due to the variation of U, B, V, R colors, will always produce an overdensity of younger and older clusters, with an underdensity of clusters in the log(age/yr)=[7.0,7.5] range. Finally, we present a unique simulation aimed at illustrating and constraining the fading limit in observed cluster distributions that includes the complex effects of stochastic variations in the observed properties of stellar clusters.
- ID:
- ivo://CDS.VizieR/J/other/NewA/19.1
- Title:
- Ages and masses of NGC1893 PMS stars
- Short Name:
- J/other/NewA/19.
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we continued our efforts to understand the star formation scenario in and around the young cluster NGC 1893. We used a sample of the young stellar sources (YSOs) identified on the basis of multiwavelength data (optical, near-infrared (NIR), mid-infrared (MIR) and X-ray) to study the nature of YSOs associated with the region. The identified YSOs show an age spread of ~5Myr. The YSOs located near the nebulae at the periphery of the cluster are relatively younger in comparison to those located within the cluster region. The present results are in accordance with those obtained by us in previous studies. Other main results from the present study are: 1) the fraction of disk bearing stars increases towards the periphery of the cluster; 2) there is an evidence supporting the notion that the mechanisms for disk dispersal operate less efficiently for low-mass stars; 3) the sample of Class II sources is found to be relatively older in comparison to that of Class III sources. A comparison of various properties of YSOs in the NGC 1893 region with those in the Tr 37/ IC 1396 region is also discussed.