NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7M_{sun}_ stars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78+/-0.12 kpc, an age of 90+/-20Ma and a tidal radius of 14.8^+6.8^_-3.2_ arcmin. We estimate an initial mass above 5700M_{sun}_, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses ~=6M_{sun}_. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H]=+0.19+/-0.05, and a homogeneous chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li)=2.41, is also detected. An overabundance of Ba is found, supporting the enhanced s-process. The ratio of yellow to red giants is much smaller than 1, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.
The coeval stars of young open clusters provide insights into the formation of the rotation-activity relationship that elude studies of multi-age field populations. We measure the chromospheric activity of cool stars in the 300 Myr old open cluster NGC 3532 in concert with their rotation periods to study the mass-dependent morphology of activity for this transitional coeval population. Using multi-object spectra of the Ca II infrared triplet region obtained with the AAOmega spectrograph at the 4m Anglo- Australian Telescope, we measure the chromospheric emission ratios R'_IRT_ for 454 FGKM cluster members of NGC3532. The morphology of activity against colour appears to be a near-mirror image of the cluster's rotational behaviour. In particular, we identify a group of 'desaturated transitional rotators' that branches off from the main group of unsaturated FGK slow rotators, and from which it is separated by an 'activity gap'. The few desaturated gap stars are identical to the ones in the rotational gap. Nevertheless, the rotation-activity diagram is completely normal. In fact, the relationship is so tight that it allows us to predict rotation periods for many additional stars. We then precisely determine these periods from our photometric light curves, allowing us to construct an enhanced colour-period diagram that represents 66% of the members in our sample. Our activity measurements show that all fast rotators of near-solar mass (F-G type) have evolved to become slow rotators, demonstrating that the absence of fast rotators in a colour-period diagram is not a detection issue but an astrophysical fact. We also identify a new population of low-activity stars among the early Mdwarfs, enabling us to populate the extended slow rotator sequence in the colour-period diagram. The joint analysis of chromospheric activity and photometric time series data thus enables comprehensive insights into the evolution of the rotation and activity of stars during the transitional phase between the Pleiades and Hyades ages.
High-dispersion spectra of 89 potential members of the old, super-metal-rich open cluster, NGC 6253, have been obtained with the HYDRA multi-object spectrograph. Based upon radial-velocity measurements alone, 47 stars at the turnoff of the cluster color-magnitude diagram (CMD) and 18 giants are identified as potential members.
We present the current results from our ongoing radial-velocity (RV) survey of the intermediate-age (2.4Gyr) open cluster NGC 6819. Using both newly observed and other available photometry and astrometry, we define a primary target sample of 1454 stars that includes main-sequence, subgiant, giant, and blue straggler stars, spanning a magnitude range of 11<=V<=16.5 and an approximate mass range of 1.1-1.6M_{sun}_. Our sample covers a 23 arcminute (13pc) square field of view centered on the cluster. We have measured 6571 radial velocities for an unbiased sample of 1207 stars in the direction of the open cluster NGC 6819, with a single-measurement precision of 0.4km/s for most narrow-lined stars. We use our RV data to calculate membership probabilities for stars with >=3 measurements, providing the first comprehensive membership study of the cluster core that includes stars from the giant branch through the upper main sequence. We identify 480 cluster members. Additionally, we identify velocity-variable systems, all of which are likely hard binaries that dynamically power the cluster.
NGC 2345 is a young open cluster hosting seven blue and red supergiants, low metallicity and a high fraction of Be stars which makes it a privileged laboratory to study stellar evolution. We aim to improve the determination of the cluster parameters and study the Be phenomenon. Our objective is also to characterise its seven evolved stars by deriving their atmospheric parameters and chemical abundances. We performed a complete analysis combining for the first time ubvy photometry with spectroscopy as well as Gaia Data Release 2. We obtained spectra with classification purposes for 76 stars and high-resolution spectroscopy for an in-depth analysis of the blue and red evolved stars. We identify a new red supergiant and 145 B-type likely members within a radius of 18.7+/-1.2arcmin, which implies an initial mass, M_cl_~5,200M_{sun}_. We find a distance of 2.5+/-0.2kpc for NGC 2345, placing it at R_GC_=10.2+/-0.2kpc. Isochrone fitting supports an age of 56+/-13Ma, implying masses around 6.5M_{sun}_ for the supergiants. A high fraction of Be stars (~10%) is found. From the spectral analysis we estimate for the cluster an average v_rad}_=+58.6+/-0.5km/1 and a low metallicity, [Fe/H]=-0.28+/-0.07. We also have determined chemical abundances for Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y, and Ba for the evolved stars. The chemical composition of the cluster is consistent with that of the Galactic thin disc. One of the K supergiants, S50, is a Li-rich star, presenting an A(Li)~2.1. An overabundance of Ba is found, supporting the enhanced s-process. NGC 2345 has a low metallicity for its Galactocentric distance, comparable to typical LMC stars. It is massive enough to serve as a testbed for theoretical evolutionary models for massive intermediate-mass stars.
Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. We aim to explore the structure of the open cluster and star-forming region NGC 2264 (~3Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8M_{sun}_ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters.
This paper presents optical (ugriH{alpha})-infrared (JHKs, 3.6-8.0um) photometry and Gaia astrometry of 55 Classical T-Tauri stars (CTTS) in the star-forming region Sh 2-012 and its central cluster NGC 6383. The sample was identified based on photometric H{alpha} emission linewidths, and has a median age of 2.8+/-1.6Myr, with a mass range between 0.3 and 1M_{sun}_. 94 per cent of CTTS with near-infrared cross-matches fall on the near-infrared T-Tauri locus, with all stars having mid-infrared photometry exhibiting evidence for accreting circumstellar discs. CTTS are found concentrated around the central cluster NGC 6383, and towards the bright rims located at the edges of Sh 2-012. Stars across the region have similar ages, suggestive of a single burst of star formation. Mass accretion rates dMacc/dt) estimated via H{alpha} and u-band line intensities show a scatter (0.3dex) similar to spectroscopic studies, indicating the suitability of H{alpha} photometry to estimate dMacc/dt. Examining the variation of dMacc/dt with stellar mass (M*), we find a smaller intercept in the (dMacc/dt)-M* relation than oft-quoted in the literature, providing evidence to discriminate between competing theories of protoplanetary disc evolution.
There are many pertinent open issues in the area of star and planet formation. Large statistical samples of young stars across star-forming regions are needed to trigger a breakthrough in our understanding, but most optical studies are based on a wide variety of spectrographs and analysis methods, which introduces large biases. Here we show how graphical Bayesian networks can be employed to construct a hierarchical probabilistic model which allows pre-main-sequence ages, masses, accretion rates and extinctions to be estimated using two widely available photometric survey data bases (Isaac Newton Telescope Photometric H{alpha} Survey r'/H{alpha}/i' and Two Micron All Sky Survey J-band magnitudes). Because our approach does not rely on spectroscopy, it can easily be applied to homogeneously study the large number of clusters for which Gaia will yield membership lists. We explain how the analysis is carried out using the Markov chain Monte Carlo method and provide python source code. We then demonstrate its use on 587 known low-mass members of the star-forming region NGC 2264 (Cone Nebula), arriving at a median age of 3.0Myr, an accretion fraction of 20+/-2 per cent and a median accretion rate of 10-8.4M{sun}/yr. The Bayesian analysis formulated in this work delivers results which are in agreement with spectroscopic studies already in the literature, but achieves this with great efficiency by depending only on photometry. It is a significant step forward from previous photometric studies because the probabilistic approach ensures that nuisance parameters, such as extinction and distance, are fully included in the analysis with a clear picture on any degeneracies.
NGC 5822 is a richly populated, moderately nearby, intermediate-age open cluster covering an area larger than the full moon on the sky. A CCD survey of the cluster on the UBVI and uvbyCaH{beta} systems shows that the cluster is superposed upon a heavily reddened field of background stars with E(B-V)>0.35mag, while the cluster has small and uniform reddening at E(b-y)=0.075+/-0.008mag or E(B-V)=0.103+/-0.011mag, based upon 48 and 61 probable A and F dwarf single-star members, respectively. The errors quoted include both internal photometric precision and external photometric uncertainties.
We present CCD UBVI photometry of the intermediate old open cluster NGC 2660, covering from the red giant region to about seven magnitudes below the main sequence turn-off. Using the synthetic colour-magnitude diagram method, we estimate in a self-consistent way values for distance modulus [(m-M)_0_~12.2], reddening [E(B-V)~0.40], metallicity ([Fe/H] about solar) and age (t<=1Gyr). A 30 per cent population of binary stars turns out to be probably present.