We present the results of VRI photometry of the young open cluster IC 2602. Two 15x15arcmin^2^ fields were observed in February and May 1991 using the 1-m Swope telescope at Las Campanas. Using theoretical isochrones obtained from D'Antona & Mazzitelli (1994ApJS...90..467D), and allowing for observational and other uncertainties, we identify 78 primary candidate members with 12<V<18.5 from their positions on colour-magnitude diagrams. We compare the cluster field with an offset field of similar galactic latitude and estimate the contamination due to background stars to be large, >=50%, as might be expected given its low galactic latitude. We also compare our photometry with that given for the X-ray detected stars of Randich et al. (1995A&A...300..134R) present complimentary narrow band H{alpha} photometry for a subset of the stars.
Many studies have shown that RR Lyrae variable stars (RRL) are powerful stellar tracers of Galactic halo structure and satellite galaxies. The Dark Energy Survey (DES), with its deep and wide coverage (g~23.5 mag in a single exposure; over 5000 deg^2^) provides a rich opportunity to search for substructures out to the edge of the Milky Way halo. However, the sparse and unevenly sampled multiband light curves from the DES wide-field survey (a median of four observations in each of grizY over the first three years) pose a challenge for traditional techniques used to detect RRL. We present an empirically motivated and computationally efficient template-fitting method to identify these variable stars using three years of DES data. When tested on DES light curves of previously classified objects in SDSS stripe 82, our algorithm recovers 89% of RRL periods to within 1% of their true value with 85% purity and 76% completeness. Using this method, we identify 5783 RRL candidates, ~28% of which are previously undiscovered. This method will be useful for identifying RRL in other sparse multiband data sets.
As a follow-up to the optical spectroscopic campaign aimed at achieving completeness in the Third Catalog of Hard Fermi-LAT Sources (3FHL), we present here the results of a sample of 28 blazars of an uncertain type observed using the 4m telescope at Cerro Tololo Inter-American Observatory in Chile. Out of these 28 sources, we find that 25 are BL Lacertae objects (BL Lacs) and 3 are flat-spectrum radio quasars (FSRQs). We measure redshifts or lower limits for 16 of these blazars, and it is observed that the 12 remaining blazars have featureless optical spectra. These results are part of a more extended optical spectroscopy follow-up campaign for 3FHL blazars, where, until now, 51 blazars of an uncertain type have been classified into BL Lac and FSRQ categories. Furthermore, this campaign has resulted in redshift measurements and lower limits for 15 of these sources. Our results contribute toward attaining a complete sample of blazars above 10 GeV, which then will be crucial in extending our knowledge on blazar emission mechanisms and the extragalactic background light.
We report six new inflated hot Jupiters (HATS-25b through HATS-30b) discovered using the HATSouth global network of automated telescopes. The planets orbit stars with V magnitudes in the range of ~12-14 and have masses in the largely populated 0.5M_J_--0.7M_J_ region of parameter space but span a wide variety of radii, from 1.17R_J_ to 1.75R_J_. HATS-25b, HATS-28b, HATS-29b, and HATS-30b are typical inflated hot Jupiters (R_p_=1.17--1.26R_J_) orbiting G-type stars in short period (P=3.2-4.6 days) orbits. However, HATS-26b (R_p_=1.75R_J_, P=3.3024days) and HATS-27b (R_p_=1.50R_J_, P=4.6370days) stand out as highly inflated planets orbiting slightly evolved F stars just after and in the turn-off points, respectively, which are among the least dense hot Jupiters, with densities of 0.153g/cm^3^ and 0.180g/cm^3^, respectively. All the presented exoplanets but HATS-27b are good targets for future atmospheric characterization studies, while HATS-27b is a prime target for Rossiter-McLaughlin monitoring in order to determine its spin-orbit alignment given the brightness (V=12.8) and stellar rotational velocity (vsini~9.3km/s) of the host star. These discoveries significantly increase the number of inflated hot Jupiters known, contributing to our understanding of the mechanism(s) responsible for hot Jupiter inflation.
We here distinguish two counter-rotating stellar components in NGC 4191 and characterize their physical properties such as kinematics, size, morphology, age, metallicity. We obtained integral field spectroscopic observations with VIRUS-W and used a spectroscopic decomposition technique to separate the contribution of two stellar components to the observed galaxy spectrum. We also performed a photometric decomposition, modeling the galaxy with a Sersic bulge and two exponential disks of different scale length, with the aim of associating these structural components with the kinematic components. We then measured the equivalent width of the absorption line indices on the best-fit models that represent the kinematic components and compared our measurements to the predictions of stellar population models that also account for the variable abundance ratio of {alpha} elements.
IGAPS. merged IPHAS and UVEX of northern Galactic plane
Short Name:
V/165
Date:
21 Oct 2021
Publisher:
CDS
Description:
The INT Galactic Plane Survey (IGAPS) is the merger of the optical photometric surveys, IPHAS and UVEX, based on data from the Isaac Newton Telescope (INT) obtained between 2003 and 2018. Here, we present the IGAPS point source catalogue. It contains 295.4 million rows providing photometry in the filters, i, r, narrow-band H{alpha}, g, and URGO. The IGAPS footprint fills the Galactic coordinate range, |b|<5{deg} and 30{deg}<l<215{deg}. A uniform calibration, referred to as the Pan-STARRS system, is applied to g, r, and i, while the H{alpha} calibration is linked to r and then is reconciled via field overlaps. The astrometry in all five bands has been recalculated in the reference frame of Gaia Data Release 2. Down to i~20mag (Vega system), most stars are also detected in g, r, and H{alpha}. As exposures in the r band were obtained in both the IPHAS and UVEX surveys, typically a few years apart, the catalogue includes two distinct r measures, r_I_ and r_U_. The r 10{sigma} limiting magnitude is approximately 21, with median seeing of 1.1arcsec. Between approximately 13^th^ and 19^th^ mag in all bands, the photometry is internally reproducible to within 0.02 magnitudes. Stars brighter than r=19.5mag are tested for narrow-band H{alpha} excess signalling line emission, and for variation exceeding |r_I_-r_U_|=0.2mag. We find and flag 8292 candidate emission line stars and over 53000 variables (both at >5{sigma} confidence).
We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6-0305 (z=0.54), RXJ0152.7-1357 (z=0.83), and RXJ1226.9+3332 (z=0.89). Our analysis is based on high signal-to-noise ground-based optical spectroscopy and Hubble Space Telescope imaging for a total of 17-34 members in each cluster. Using the dynamical masses together with the effective radii and the velocity dispersions, we find no indication of evolution of sizes or velocity dispersions with redshift at a given galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices and velocity dispersions. We confirm that the FP is steeper at z~0.86 compared to the low-redshift FP, indicating that under the assumption of passive evolution the formation redshift, z_form_, depends on the galaxy velocity dispersion (or alternatively mass). At a velocity dispersion of {sigma}=125km/s (Mass=10^10.55^M_{sun}_) we find z_form_=1.24+/-0.05, while at {sigma}=225km/s (Mass=10^11.36^M_{sun}_) the formation redshift is z_form_=1.95^+0.3^_-0.2_, for a Salpeter initial mass function. The three clusters follow similar scaling relations between absorption line indices and velocity dispersions as those found for low-redshift galaxies. The zero point offsets for the Balmer lines depend on cluster redshifts. However, the offsets indicate a slower evolution, and therefore higher formation redshift, than the zero point differences found from the FP, if interpreting the data using a passive evolution model. Specifically, the strength of the higher order Balmer lines H{delta} and H{gamma} implies z_form_>2.8. The scaling relations for the metal indices in general show small and in some cases insignificant zero point offsets, favoring high formation redshifts for a passive evolution model.
We present results of our intermediate-band optical imaging survey for high-z Ly{alpha} emitters (LAEs) using the prime focus camera, Suprime-Cam, on the 8.2m Subaru telescope. In our survey, we used eleven filters: four broad-band filters (B, R_C_, i', and z') and seven intermediate-band filters covering from 500nm to 720nm. We call this imaging program the Mahoroba-11. The seven intermediate-band filters were selected from a series of IA filters, which is the Suprime-Cam intermediate-band filter system, whose spectral resolution is R=23. Our survey was made in a 34'x27' sky area in the Subaru XMM-Newton Deep Survey Field. We found 409 IA-excess objects, which provided us with a large photometric sample of strong emission-line objects. Applying the photometric redshift method to this sample, we obtained a new sample of 198 LAE candidates at 3<z<5. We found no evidence for evolutions of the number density and the star-formation rate density (SFRD) for LAEs with logL(Ly{alpha})(erg/s)>42.67 between z~3 and z~5.
We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)=Cm^{alpha}^{alpha}^{beta}^, where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M_Jup_ and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples.
We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-{sigma} ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M*/L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3{sigma} tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08M_{sun}_. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2{sigma}. There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched-{sigma} ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses (m<~0.3M_{sun}_), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M*/L relative to the mean matched-{sigma} ETG. We provide the spectra used in this study to facilitate future comparisons.