- ID:
- ivo://CDS.VizieR/J/ApJ/879/49
- Title:
- Rotation periods for 171 Gaia members of NGC 6811
- Short Name:
- J/ApJ/879/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stellar rotation was proposed as a potential age diagnostic that is precise, simple, and applicable to a broad range of low-mass stars (<=1M_{sun}_). Unfortunately, rotation period (P_rot_) measurements of low-mass members of open clusters have undermined the idea that stars spin down with a common age dependence (i.e., P_rot{propto}age^0.5^): K dwarfs appear to spin down more slowly than F and G dwarfs. Agueros+ (2018, J/ApJ/862/33) interpreted data for the ~1.4Gyr-old cluster NGC 752 differently, proposing that after having converged onto a slow-rotating sequence in their first 600-700Myr (by the age of Praesepe), K dwarf P_rot_ stall on that sequence for an extended period of time. We use data from Gaia DR2 to identify likely single-star members of the ~1Gyr-old cluster NGC 6811 with Kepler light curves. We measure P_rot_ for 171 members, more than doubling the sample relative to the existing catalog and extending the mass limit from ~0.8 to ~0.6M_{sun}_. We then apply a gyrochronology formula calibrated with Praesepe and the Sun to 27 single G dwarfs in NGC 6811 to derive a precise gyrochronological age for the cluster of 1.04+/-0.07Gyr. However, when our new low-mass rotators are included, NGC 6811's color-P_rot_ sequence deviates away from the naive 1Gyr projection down to T_eff_~4295K (K5V, 0.7M_{sun}), where it clearly overlaps with Praesepe's. Combining these data with P_rot_ for other clusters, we conclude that the assumption that mass and age are separable dependencies is invalid. Furthermore, the cluster data show definitively that stars experience a temporary epoch of reduced braking efficiency where P_rot_ stall, and that the duration of this epoch lasts longer for lower-mass stars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/634/L9
- Title:
- Rotation periods of 97 solar-like stars
- Short Name:
- J/A+A/634/L9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The accurate determination of stellar rotation periods is important for estimating stellar ages and for understanding stellar activity and evolution. While rotation periods can be determined for about thirty thousand stars in the Kepler field, there are over one hundred thousand stars, especially with low photometric variability and irregular pattern of variations, for which rotational periods are unknown. Here we investigate the effect of metallicity on the detectability of rotation periods. This is done by synthesising light curves of hypothetical stars that are identical to our Sun with the exception of the metallicity. These light curves are then used as an input to the period determination algorithms. We find that the success rate for recovering the rotation signal has a minimum close to the solar metallicity value. This can be explained by the compensation effect of facular and spot contributions. In addition, selecting solar-like stars with near-solar effective temperature and photometric variability, and with metallicity between M/H=-0.35 and M/H=0.35 from the Kepler sample, we analyse the fraction of stars for which rotational periods have been detected as a function of metallicity. In agreement with our theoretical estimate we find a local minimum for the detection fraction close to the solar metallicity. We further report rotation periods of 87 solar-like Kepler stars for the first time.
- ID:
- ivo://CDS.VizieR/J/A+A/397/421
- Title:
- r' photometry of Abell 1367 and Coma
- Short Name:
- J/A+A/397/421
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We provide the total r'-band galaxy counts corresponding to our observed fields of the clusters of galaxies Abell 1367 and Coma, as well as the r'-band background counts from Yasuda et al. (2001AJ....122.1104Y). We also provide some basic properties of the galaxies detected in our r'-band survey of the clusters of galaxies Abell 1367 and Coma: coordinates, r'-band magnitudes and surface brightness, position angles, recession velocities and ellipticities are provided. The observations were carried out with the Wide Field Camera (WFC) attached to the Prime Focus of the INT 2.5m located at Observatorio de El Roque de los Muchachos, on 26 and 28 April 2000, under photometric conditions, excepting the last half of the second night.
- ID:
- ivo://CDS.VizieR/J/ApJS/249/30
- Title:
- R-Process Alliance: metal-poor star spectroscopy
- Short Name:
- J/ApJS/249/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This compilation is the fourth data release from the R-Process Alliance (RPA) search for r-process-enhanced stars and the second release based on "snapshot" high-resolution (R~30000) spectra collected with the du Pont 2.5m Telescope. In this data release, we propose a new delineation between the r-I and r-II stellar classes at [Eu/Fe]=+0.7, instead of the empirically chosen [Eu/Fe]=+1.0 level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the r-I stars, [Eu/Fe]>+0.3. Redefining the separation between r-I and r-II stars will aid in the analysis of the possible progenitors of these two classes of stars and determine whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified r-II and r-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new r-II, 111 new r-I (plus 3 re-identified), and 7 new (plus 1 re-identified) limited-r stars out of a total of 232 target stars, resulting in a total sample of 72 new r-II stars, 232 new r-I stars, and 42 new limited-r stars identified by the RPA to date.
- ID:
- ivo://CDS.VizieR/J/ApJ/868/110
- Title:
- R-Process Alliance: 1st release in Galactic halo
- Short Name:
- J/ApJ/868/110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper presents the detailed abundances and r-process classifications of 125 newly identified metal-poor stars as part of an ongoing collaboration, the R-Process Alliance. The stars were identified as metal-poor candidates from the RAdial Velocity Experiment (RAVE) and were followed up at high spectral resolution (R~31500) with the 3.5m telescope at Apache Point Observatory. The atmospheric parameters were determined spectroscopically from FeI lines, taking into account <3D> non-LTE corrections and using differential abundances with respect to a set of standards. Of the 125 new stars, 124 have [Fe/H]{<}-1.5, 105 have [Fe/H]{<}-2.0, and 4 have [Fe/H]{<}-3.0. Nine new carbon-enhanced metal-poor stars have been discovered, three of which are enhanced in r-process elements. Abundances of neutron-capture elements reveal 60 new r-I stars (with +0.3<=[Eu/Fe]<=+1.0 and [Ba/Eu]<0) and 4 new r-II stars (with [Eu/Fe]>+1.0). Nineteen stars are found to exhibit a "limited-r" signature ([Sr/Ba]>+0.5, [Ba/Eu]<0). For the r-II stars, the second- and third-peak main r-process patterns are consistent with the r-process signature in other metal-poor stars and the Sun. The abundances of the light, {alpha}, and Fe-peak elements match those of typical Milky Way (MW) halo stars, except for one r-I star that has high Na and low Mg, characteristic of globular cluster stars. Parallaxes and proper motions from the second Gaia data release yield UVW space velocities for these stars that are consistent with membership in the MW halo. Intriguingly, all r-II and the majority of r-I stars have retrograde orbits, which may indicate an accretion origin.
- ID:
- ivo://CDS.VizieR/J/ApJ/854/47
- Title:
- RRab stars of Monoceros Ring & A13 overdensities
- Short Name:
- J/ApJ/854/47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Monoceros Ring (also known as the Galactic Anticenter Stellar Structure) and A13 are stellar overdensities at estimated heliocentric distances of d~11kpc and 15kpc observed at low Galactic latitudes toward the anticenter of our Galaxy. While these overdensities were initially thought to be remnants of a tidally disrupted satellite galaxy, an alternate scenario is that they are composed of stars from the Milky Way (MW) disk kicked out to their current location due to interactions between a satellite galaxy and the disk. To test this scenario, we study the stellar populations of the Monoceros Ring and A13 by measuring the number of RR Lyrae and M giant stars associated with these overdensities. We obtain low-resolution spectroscopy for RR Lyrae stars in the two structures and measure radial velocities to compare with previously measured velocities for M giant stars in the regions of the Monoceros Ring and A13, to assess the fraction of RR Lyrae to M giant stars (f_RR:MG_) in A13 and Mon/GASS. We perform velocity modeling on 153 RR Lyrae stars (116 in the Monoceros Ring and 37 in A13) and find that both structures have very low f_RR:MG_. The results support a scenario in which stars in A13 and Mon/GASS formed in the MW disk. We discuss a possible association between Mon/GASS, A13, and the Triangulum-Andromeda overdensity based on their similar velocity distributions and f_RR:MG_.
- ID:
- ivo://CDS.VizieR/J/ApJ/874/30
- Title:
- RRab stars toward Baade's window with Blanco/DECam
- Short Name:
- J/ApJ/874/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained repeated images of six fields toward the Galactic bulge in five passbands (u, g, r, i, z) with the DECam imager on the Blanco 4m telescope at CTIO. From more than 1.6 billion individual photometric measurements in the field centered on Baade's window, we have detected 4877 putative variable stars. A total of 474 of these have been confirmed as fundamental mode RR Lyrae stars, whose colors at minimum light yield line-of-sight reddening determinations, as well as a reddenning law toward the Galactic Bulge, which differs significantly from the standard R_V_=3.1 formulation. Assuming that the stellar mix is invariant over the 3 square-degree field, we are able to derive a line-of-sight reddening map with sub-arcminute resolution, enabling us to obtain de-reddened and extinction corrected color-magnitude diagrams (CMDs) of this bulge field using up to 2.5 million well-measured stars. The corrected CMDs show unprecedented detail and expose sparsely populated sequences: for example, delineation of the very wide red giant branch, structure within the red giant clump, the full extent of the horizontal branch, and a surprising bright feature that is likely due to stars with ages younger than 1Gyr. We use the RR Lyrae stars to trace the spatial structure of the ancient stars and find an exponential decline in density with Galactocentric distance. We discuss ways in which our data products can be used to explore the age and metallicity properties of the bulge, and how our larger list of all variables is useful for learning to interpret future LSST alerts.
- ID:
- ivo://CDS.VizieR/J/AJ/152/170
- Title:
- RRLs in globulars. IV. UBVRI photometry in Omega Cen
- Short Name:
- J/AJ/152/170
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New accurate and homogeneous optical UBVRI photometry has been obtained for variable stars in the Galactic globular cluster {omega} Cen (NGC 5139). We secured 8202 CCD images covering a time interval of 24 years and a sky area of 84x48arcmin. The current data were complemented with data available in the literature and provided new, homogeneous pulsation parameters (mean magnitudes, luminosity amplitudes, periods) for 187 candidate {omega} Cen RR Lyrae (RRLs). Among them we have 101 RRc (first overtone) and 85 RRab (fundamental) variables, and a single candidate RRd (double-mode) variable. Candidate Blazhko RRLs show periods and colors that are intermediate between the RRc and RRab variables, suggesting that they are transitional objects. A comparison of the period distribution and the Bailey diagram indicates that RRLs in {omega} Cen show a long-period tail not present in typical Oosterhoff II (OoII) globulars. The RRLs in dwarf spheroidals and in ultra-faint dwarfs have properties between Oosterhoff intermediate and OoII clusters. Metallicity plays a key role in shaping the above evidence. These findings do not support the hypothesis that {omega} Cen is the core remnant of a spoiled dwarf galaxy. Using optical period-Wesenheit relations that are reddening-free and minimally dependent on metallicity we find a mean distance to {omega} Cen of 13.71+/-0.08+/-0.01mag (semi-empirical and theoretical calibrations). Finally, we invert the I-band period-luminosity-metallicity relation to estimate individual RRLs' metal abundances. The metallicity distribution agrees quite well with spectroscopic and photometric metallicity estimates available in the literature.
- ID:
- ivo://CDS.VizieR/J/AJ/155/137
- Title:
- RRLs in globulars. V.{omega} Centauri NIR photometry
- Short Name:
- J/AJ/155/137
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new complete near-infrared (NIR, JHK_s_) census of RR Lyrae stars (RRLs) in the globular {omega} Cen (NGC 5139). We collected 15472 JHK_s_ images with 4-8 m class telescopes over 15 years (2000-2015) covering a sky area around the cluster center of 60x34 arcmin^2^. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with 10 to 60 measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 (J), 176 (H) and 174 (K_s_) RRLs. These data were supplemented with single-epoch JK_s_ magnitudes from VHS (Mcmahon et al. 2013Msngr.154...35M) and with single-epoch H magnitudes from 2MASS (Cat. VII/233). Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide JHK_s_ magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed-mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P>0.7 days) fundamental RRLs. Using predicted period-luminosity-metallicity relations, we derive a true distance modulus of 13.674+/-0.008+/-0.038 mag (statistical error and standard deviation of the median) based on spectroscopic iron abundances, and of 13.698+/-0.004+/-0.048 mag based on photometric iron abundances. We also found evidence of possible systematics at the 5%-10% level in the zero-point of the period-luminosity relations based on the five calibrating RRLs whose parallaxes had been determined with the HST.
- ID:
- ivo://CDS.VizieR/J/ApJ/831/165
- Title:
- RR Lyrae as tracers in the Virgo overdensity region
- Short Name:
- J/ApJ/831/165
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use a combination of spatial distribution and radial velocity to search for halo substructures in a sample of 412 RR Lyrae stars (RRLSs) that covers a region of ~525 square degrees of the Virgo overdensity (VOD) and spans distances from the Sun from 4 to 75kpc. With a friends-of-friends algorithm we identified six high-significance groups of RRLSs in phase space, which we associate mainly with the VOD and with the Sagittarius stream. Four other groups were also flagged as less significant overdensities. Three high-significance and three lower-significance groups have distances between ~10 and 20kpc, which places them in the distance range attributed by others to the VOD. The largest of these is the Virgo stellar stream at 19kpc, which has 18 RRLSs, a factor of two increase over the number known previously. While these VOD groups are distinct according to our selection criteria, their overlap in position and distance and, in a few cases, similarity in radial velocity are suggestive that they may not all stem from separate accretion events. Even so, the VOD appears to be caused by more than one overdensity. The Sagittarius (Sgr) stream is a very obvious feature in the background of the VOD at a mean distance of 44kpc. Two additional high-significance groups were detected at distances >40kpc. Their radial velocities and locations differ from the expected path of the Sgr debris in this part of the sky, and they are likely to be remnants of other accretion events.