- ID:
- ivo://CDS.VizieR/J/A+AS/137/75
- Title:
- ESO Imaging Survey. IV.
- Short Name:
- J/A+AS/137/75
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper presents preliminary lists of potentially interesting point-like sources extracted from multicolour data obtained for a 1.7 square degree region near the South Galactic Pole. The region has been covered by the ESO Imaging Survey (EIS) in B, V and I and offers a unique combination of area and depth. These lists, containing a total of 330 objects nearly all brighter than I~21.5, over 1. 27 square degrees (after removing some bad regions), are by-products of the process of verification and quality control of the object catalogs being produced. Among the colour selected targets are candidate very low mass stars/brown dwarfs (54), white-dwarfs (32), and quasars (244). In addition, a probable fast moving asteroid was identified. The objects presented here are natural candidates for follow-up spectroscopic observations and illustrate the usefulness of the EIS data for a broad range of science and for providing possible samples for the first year of the VLT.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/V/14
- Title:
- Estimated astrophysical parameters from uvby
- Short Name:
- V/14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Observed values of the Stroemgren uvby colors were collected from the literature. A computer program calculated the reddening for each star. This value was used to compute the unreddened value of (b-v), c1, and m1. These were then used to compute [c(1)], [m(1)], and [u-b] for the star. Except for the H beta index, the observed quantities are not included.
- ID:
- ivo://CDS.VizieR/J/MNRAS/432/2112
- Title:
- Estimating gas masses from HI and CO data
- Short Name:
- J/MNRAS/432/2112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a method to estimate the total gas column density, dust-to-gas and dust-to-metal ratios of distant galaxies from rest-frame optical spectra. The technique exploits the sensitivity of certain optical lines to changes in depletion of metals on to dust grains and uses photoionization models to constrain these physical ratios along with the metallicity and dust column density. We compare our gas column density estimates with HI and CO gas mass estimates in nearby galaxies to show that we recover their total gas mass surface density to within a factor of 2 up to a total surface gas mass density of ~75M{sun}/pc^2^. Our technique is independent of the conversion factor of CO to H_2_ and we show that a metallicity-dependent X_CO_ is required to achieve good agreement between our measurements and that provided by CO and HI. However, we also show that our method cannot be reliably aperture corrected to total integrated gas mass. We calculate dust-to-gas ratios for all star-forming galaxies in the Sloan Digital Sky Survey Data Release 7 and show that the resulting dependence on metallicity agrees well with the trend inferred from modelling of the dust emission of nearby galaxies using far-IR data. We also present estimates of the variation of the dust-to-metal ratio with metallicity and show that this is poorly constrained at metallicities below 50% solar. We conclude with a study of the inventory of gas in the central regions, defined both in terms of a fixed physical radius and as a fixed fraction of the half-light radius, of ~70000 star-forming galaxies from the Sloan Digital Sky Survey. We show that their central gas content and gas depletion time are not accurately predicted by a single parameter, but in agreement with recent studies we find that a combination of the stellar mass and some measure of central concentration provides a good predictor of gas content in galaxies. We also identify a population of galaxies with low surface densities of stars and very long gas depletion times.
- ID:
- ivo://CDS.VizieR/J/ApJS/256/9
- Title:
- Euclid preparation. XIV. C3R2 survey DR3
- Short Name:
- J/ApJS/256/9
- Date:
- 18 Jan 2022 14:01:22
- Publisher:
- CDS
- Description:
- The Complete Calibration of the Color-Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of i~24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage IV dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B-2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2<z_p_<2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters+ 2017, J/ApJ/841/111) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman.
- ID:
- ivo://CDS.VizieR/J/ApJ/885/100
- Title:
- Evolu. star mass-metallicity relation. II.
- Short Name:
- J/ApJ/885/100
- Date:
- 16 Mar 2022 11:50:55
- Publisher:
- CDS
- Description:
- We present the stellar mass-[Fe/H] and mass-[Mg/H] relation of quiescent galaxies in two galaxy clusters at z~0.39 and z~0.54. We derive the age, [Fe/H], and [Mg/Fe] for each individual galaxy using a full-spectrum fitting technique. By comparing with the relations for z~0 Sloan Digital Sky Survey galaxies, we confirm our previous finding that the mass-[Fe/H] relation evolves with redshift. The mass-[Fe/H] relation at higher redshift has lower normalization and possibly steeper slope. However, based on our sample, the mass-[Mg/H] relation does not evolve over the observed redshift range. We use a simple analytic chemical evolution model to constrain the average outflow that these galaxies experience over their lifetime, via the calculation of mass-loading factor. We find that the average mass-loading factor {eta} is a power-law function of galaxy stellar mass, {eta}{prop}M*^-0.21{+/-}0.09^. The measured mass-loading factors are consistent with the results of other observational methods for outflow measurements and with the predictions where outflow is caused by star formation feedback in turbulent disks.
- ID:
- ivo://CDS.VizieR/J/A+A/624/A8
- Title:
- Evolved Galactic open clusters dynamical properties
- Short Name:
- J/A+A/624/A8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The stellar content of Galactic open clusters (OCs) is gradually depleted during their evolution as a result of internal relaxation and external interactions. The final residues of the long-term evolution of OCs are called open cluster remnants (OCRs).These are sparsely populated structures that can barely be distinguished from the field. We aimed to characterise and compare the dynamical states of a set of 16 objects catalogued as OCRs or OCR candidates. The sample also includes 7 objects that are catalogued as dynamically evolved OCs for comparison purposes. We used photometric data from the 2MASS catalogue, proper motions and parallaxes from the GAIA DR2 catalogue, and a decontamination algorithm that was applied to the three-dimensional astrometric space of proper motions and parallaxes ({mu}_{alpha}, {mu}_{delta}, {varpi}) for stars in the objects' areas. The investigated OCRs present masses (M) and velocity dispersions ({sigma}_v_) within well-defined ranges: M between ~10-40M_{sun} and {sigma}_v_ between ~1-7km/s. Some objects in the remnant sample have a limiting radius R_lim_<~2pc, which means that they are more compact than the investigated OCs; other remnants have R_lim_ between ~2-7pc, which is comparable to the OCs. In general, our clusters show signals of depletion of low-mass stars. This confirms their dynamically evolved states. Using results from N-body simulations, we conclude that the OCRs we studied are in fact remnants of initially very populous OCs (N_0_~10^3^-10^4^stars). The outcome of the long-term evolution is to bring the final residues of the OCs to dynamical states that are similar to each other, thus masking out the memory of the initial formation conditions of star clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/902/24
- Title:
- Evolved massive stars with TESS. II.
- Short Name:
- J/ApJ/902/24
- Date:
- 14 Mar 2022 07:45:17
- Publisher:
- CDS
- Description:
- Massive stars briefly pass through the yellow supergiant (YSG) phase as they evolve redward across the H-R diagram and expand into red supergiants (RSGs). Higher-mass stars pass through the YSG phase again as they evolve blueward after experiencing significant RSG mass loss. These post-RSG objects offer us a tantalizing glimpse into which stars end their lives as RSGs and why. One telltale sign of a post-RSG object may be an instability to pulsations, depending on the star's interior structure. Here we report the discovery of five YSGs with pulsation periods faster than 1 day, found in a sample of 76 cool supergiants observed by the Transiting Exoplanet Survey Satellite (TESS) at a two-minute cadence. These pulsating YSGs are concentrated in an H-R diagram region not previously associated with pulsations; we conclude that this is a genuine new class of pulsating star, fast yellow pulsating supergiants (FYPSs). For each FYPS, we extract frequencies via iterative prewhitening and conduct a time-frequency analysis. One FYPS has an extracted frequency that is split into a triplet, and the amplitude of that peak is modulated on the same timescale as the frequency spacing of the triplet; neither rotation nor binary effects are likely culprits. We discuss the evolutionary status of FYPS and conclude that they are candidate post-RSGs. All stars in our sample also show the same stochastic low-frequency variability found in hot OB stars and attributed to internal gravity waves. Finally, we find four {alpha} Cygni variables in our sample, of which three are newly discovered.
- ID:
- ivo://CDS.VizieR/J/ApJ/881/9
- Title:
- EvryFlare. I. Cool stars's flares in southern sky
- Short Name:
- J/ApJ/881/9
- Date:
- 09 Dec 2021
- Publisher:
- CDS
- Description:
- We search for superflares from 4068 cool stars in 2+yr of Evryscope photometry, focusing on those with high-cadence data from both Evryscope and the Transiting Exoplanet Survey Satellite (TESS). The Evryscope array of small telescopes observed 575 flares from 284 stars, with a median energy of 1034.0erg. Since 2016, Evryscope has enabled the detection of rare events from all stars observed by TESS through multi-year, high-cadence continuous observing. We report around twice the previous largest number of 1034erg high-cadence flares from nearby cool stars. We find eight flares with amplitudes of 3+g' magnitudes, with the largest reaching 5.6mag and releasing 1036.2erg. We observe a 1034erg superflare from TOI-455 (LTT1445), a mid-M with a rocky planet candidate. We measure the superflare rate per flare-star and quantify the average flaring of active stars as a function of spectral type, including superflare rates, flare frequency distributions, and typical flare amplitudes in g'. We confirm superflare morphology is broadly consistent with magnetic reconnection. We estimate starspot coverage necessary to produce superflares, and hypothesize maximum allowed superflare energies and waiting times between flares corresponding to 100% coverage of the stellar hemisphere. We observe decreased flaring at high Galactic latitudes. We explore the effects of superflares on ozone loss to planetary atmospheres: we observe one superflare with sufficient energy to photodissociate all ozone in an Earth-like atmosphere in one event. We find 17 stars that may deplete an Earth-like atmosphere via repeated flaring. Of the 1822 stars around which TESS may discover temperate rocky planets, we observe 14.6%{+/-}2% emit large flares.
- ID:
- ivo://CDS.VizieR/J/ApJ/895/140
- Title:
- EvryFlare. II. Parameters of 122 cool flare stars
- Short Name:
- J/ApJ/895/140
- Date:
- 15 Mar 2022 07:38:49
- Publisher:
- CDS
- Description:
- We measure rotation periods and sinusoidal amplitudes in Evryscope light curves for 122 two-minute K5-M4 TESS targets selected for strong flaring. The Evryscope array of telescopes has observed all bright nearby stars in the south, producing 2-minute cadence light curves since 2016. Long-term, high-cadence observations of rotating flare stars probe the complex relationship between stellar rotation, starspots, and superflares. We detect periods from 0.3487 to 104days and observe amplitudes from 0.008 to 0.216 g'mag. We find that the Evryscope amplitudes are larger than those in TESS with the effect correlated to stellar mass (p-value=0.01). We compute the Rossby number (Ro) and find that our sample selected for flaring has twice as many intermediate rotators (0.04<Ro<0.4) as fast (Ro<0.04) or slow (Ro>0.44) rotators; this may be astrophysical or a result of period detection sensitivity. We discover 30 fast, 59 intermediate, and 33 slow rotators. We measure a median starspot coverage of 13% of the stellar hemisphere and constrain the minimum magnetic field strength consistent with our flare energies and spot coverage to be 500G, with later-type stars exhibiting lower values than earlier-type stars. We observe a possible change in superflare rates at intermediate periods. However, we do not conclusively confirm the increased activity of intermediate rotators seen in previous studies. We split all rotators at Ro~0.2 into bins of PRot<10days and PRot>10 days to confirm that short-period rotators exhibit higher superflare rates, larger flare energies, and higher starspot coverage than do long-period rotators, at p-values of 3.2x10^-5^, 1.0x10^-5^, and 0.01, respectively.
- ID:
- ivo://CDS.VizieR/J/ApJ/895/52
- Title:
- EW and chemical abundances in 211 stars with HARPS
- Short Name:
- J/ApJ/895/52
- Date:
- 15 Mar 2022 07:30:10
- Publisher:
- CDS
- Description:
- Magnetic fields and stellar spots can alter the equivalent widths of absorption lines in stellar spectra, varying during the activity cycle. This also influences the information that we derive through spectroscopic analysis. In this study, we analyze high-resolution spectra of 211 sunlike stars observed at different phases of their activity cycles, in order to investigate how stellar activity affects the spectroscopic determination of stellar parameters and chemical abundances. We observe that the equivalent widths of lines can increase as a function of the activity index log R_HK_' during the stellar cycle, which also produces an artificial growth of the stellar microturbulence and a decrease in effective temperature and metallicity. This effect is visible for stars with activity indexes log R_HK_'>=-5.0 (i.e., younger than 4-5Gyr), and it is more significant at higher activity levels. These results have fundamental implications on several topics in astrophysics that are discussed in the paper, including stellar nucleosynthesis, chemical tagging, the study of Galactic chemical evolution, chemically anomalous stars, the structure of the Milky Way disk, stellar formation rates, photoevaporation of circumstellar disks, and planet hunting.