- ID:
- ivo://CDS.VizieR/J/A+A/615/A103
- Title:
- CORNISH project. III. UCHII region catalogue
- Short Name:
- J/A+A/615/A103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A catalogue of 239 ultra-compact HII regions (UCHIIs) found in the CORNISH survey at 5GHz and 1.5-arcsec resolution in the region 10{deg}<l<65{deg}, |b|<1{deg} is presented. This is the largest complete and well-selected sample of UCHIIs to date and provides the opportunity to explore the global and individual properties of this key state in massive star formation at multiple wavelengths. The nature of the candidates was validated, based on observational properties and calculated spectral indices, and the analysis is presented in this work. The physical sizes, luminosities and other physical properties were computed by utilising literature distances or calculating the distances whenever a value was not available. The near- and mid-infrared extended source fluxes were measured and the extinctions towards the UCHIIs were computed. The new results were combined with available data at longer wavelengths and the spectral energy distributions (SEDs) were reconstructed for 177 UCHIIs. The bolometric luminosities obtained from SED fitting are presented. By comparing the radio flux densities to previous observational epochs, we find about 5% of the sources appear to be time variable. This first high-resolution area survey of the Galactic plane shows that the total number of UCHIIs in the Galaxy is ~750 - a factor of 3-4 fewer than found in previous large area radio surveys. It will form the basis for future tests of models of massive star formation.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/480/2423
- Title:
- CORNISH project IV. Radio-selected galactic PN
- Short Name:
- J/MNRAS/480/2423
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new radio-selected sample of PNe from the CORNISH survey. We find 90 new PNe, of which 12 are newly discovered and 78 are newly classified as PN. A further 47 previously suspected PNe are confirmed as such from the analysis presented here and 24 known PNe are detected. Eight sources are classified as possible PNe or other source types.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A11
- Title:
- Corona Australis ALMA and X-Shooter data
- Short Name:
- J/A+A/626/A11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In recent years, the disk populations in a number of young star-forming regions have been surveyed with the Atacama Large Millimeter/submillimeter Array (ALMA). Understanding the disk properties and their correlation with the properties of the central star is critical to understanding planet formation. In particular, a decrease of the average measured disk dust mass with the age of the region has been observed, consistent with grain growth and disk dissipation. We aim to compare the general properties of disks and their host stars in the nearby (d=160pc) Corona Australis (CrA) star forming region to those of the disks and stars in other regions. We conducted high-sensitivity continuum ALMA observations of 43 Class II young stellar objects in CrA at 1.3mm (230GHz). The typical spatial resolution is 0.3''. The continuum fluxes ar e used to estimate the dust masses of the disks, and a survival analysis is performed to estimate the average dust mass. We also obtained new VLT/X-Shooter spectra for 12 of the objects in our sample for which spectral type (SpT) information was missing. Twenty-four disks were detected, and stringent limits have been put on the average dust mass of the nondetections. Taking into account the upper limits, the average disk mass in CrA is 6+/-3M_{sun}_. This value is significantly lower than that of disks in other young (1-3Myr) star forming regions (Lupus, Taurus, Chamaeleon I, and Ophiuchus) and appears to be consistent with the average disk mass of the 5-10Myr-old Upper Sco. The position of the stars in our sample on the Herzsprung-Russel diagram however seems to confirm that CrA has an age similar to Lupus. Neither external photoevaporation nor a lower-than-usual stellar mass distribution can explain the low disk masses. On the other hand, a low-mass disk population could be explained if the disks were small, which could happen if the parent cloud had a low temperature or intrinsic angular momentum, or if the angular momentum of the cloud were removed by some physical mechanism such as magnetic braking. Even in detected disks, none show clear substructures or cavities. Our results suggest that in order to fully explain and understand the dust mass distribution of protoplanetary disks and their evolution, it may also be necessary to take into consideration the initial conditions of star- and disk-formation process. These conditions at the very beginning may potentially vary from region to region, and could play a crucial role in planet formation and evolution.
- ID:
- ivo://CDS.VizieR/J/A+A/523/A91
- Title:
- CoRoT/Exoplanet fields with MATISSE
- Short Name:
- J/A+A/523/A91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The homogeneous spectroscopic determination of the stellar parameters is a mandatory step for transit detections from space. Knowledge of which population the planet hosting stars belong to places constraints on the formation and evolution of exoplanetary systems. We used the FLAMES/GIRAFFE multi-fiber instrument at ESO to spectroscopically observe samples of stars in three CoRoT/Exoplanet fields, namely the LRa01, LRc01, and SRc01 fields, and characterize their stellar populations. We present accurate atmospheric parameters, Teff, logg, [M/H], and [alpha/Fe] derived for 1227 stars in these fields using the MATISSE algorithm. The latter is based on the spectral synthesis methodology and automatically provides stellar parameters for large samples of observed spectra. We trained and applied this algorithm to FLAMES observations covering the MgIb spectral range. It was calibrated on reference stars and tested on spectroscopic samples from other studies in the literature. The barycentric radial velocities and an estimate of the vsini values were measured using cross-correlation techniques. We corrected our samples in the LRc01 and LRa01 CoRoT fields for selection effects to characterize their FGK dwarf stars population, and compiled the first unbiased reference sample for the in-depth study of planet metallicity relationship in these CoRoT fields. We conclude that the FGK dwarf population in these fields mainly exhibit solar metallicity. We show that for transiting planet finding missions, the probability of finding planets as a function of metallicity could explain the number of planets found in the LRa01 and LRc01 CoRoT fields. This study demonstrates the potential of multi-fiber observations combined with an automated classifier such as MATISSE for massive spectral classification.
- ID:
- ivo://CDS.VizieR/J/ApJ/896/3
- Title:
- Cosmicflows-4: Tully-Fisher relation calibrations
- Short Name:
- J/ApJ/896/3
- Date:
- 07 Mar 2022 07:21:25
- Publisher:
- CDS
- Description:
- This study is a part of the Cosmicflows-4 project with the aim of measuring the distances of more than ~10000 spiral galaxies in the local universe up to ~15000km/s. New HI line width information has come primarily from the Arecibo Legacy Fast ALFA Survey. Photometry of our sample galaxies has been carried out in optical (SDSS u, g, r, i, and z) and infrared (WISE W1 and W2) bands. Inclinations have been determined using an online graphical interface accessible to a collaboration of citizen scientists. Galaxy distances are measured based on the correlation between the rotation rate of spirals and their absolute luminosity, known as the Tully-Fisher relation (TFR). In this study, we present the calibration of the TFR using a subsample of ~600 spirals located in 20 galaxy clusters. Correlations among such observables as color, surface brightness, and relative HI content are explored in an attempt to reduce the scatter about the TFR with the goal of obtaining more accurate distances. A preliminary determination of the Hubble constant from the distances and velocities of the calibrator clusters is H0=76.0+/-1.1(stat.)+/-2.3(sys.)km/s/Mpc.
- ID:
- ivo://CDS.VizieR/J/MNRAS/438/3465
- Title:
- Cosmic web filaments in the SDSS
- Short Name:
- J/MNRAS/438/3465
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The main feature of the spatial large-scale galaxy distribution is its intricate network of galaxy filaments. This network is spanned by the galaxy locations that can be interpreted as a three-dimensional point distribution. The global properties of the point process can be measured by different statistical methods, which, however, do not describe directly the structure elements. The morphology of the large scale structure, on the other hand, is an important property of the galaxy distribution. Here we apply an object point process with interactions (the Bisous model) to trace and extract the filamentary network in the presently largest galaxy redshift survey, the Sloan Digital Sky Survey (SDSS). We search for filaments in the galaxy distribution that have a radius of about 0.5Mpc/h. We divide the detected network into single filaments and present a public catalogue of filaments. We study the filament length distribution and show that the longest filaments reach the length of 60Mpc/h. The filaments contain 35-40% of the total galaxy luminosity and they cover roughly 5-8% of the total volume, in good agreement with N-body simulations and previous observational results.
- ID:
- ivo://CDS.VizieR/J/ApJ/696/1195
- Title:
- COSMOS AGN spectroscopic survey. I.
- Short Name:
- J/ApJ/696/1195
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2deg^2^ Cosmic Evolution Survey field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the Inamori Magellan Areal Camera and Spectrograph instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f_0.5-10keV_>8x10^-16-^erg/cm^2^/s and i^+^_AB_<22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to i^+^_AB_<23. The corrected sample includes a 57% broad emission line (Type 1, unobscured) active galactic nucleus (AGN) at 0.13<z<4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07<z<1.29, and 18% absorption line (host-dominated, obscured) AGN at 0<z<1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the survey's limits in X-ray and optical fluxes include nearly all X-ray AGNs (defined by L_0.5-10keV_>3x10^42^erg/s) to z<1, of both optically obscured and unobscured types.
- ID:
- ivo://CDS.VizieR/J/ApJS/172/523
- Title:
- COSMOS field Ly{alpha} emitters at z~5.7
- Short Name:
- J/ApJS/172/523
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from a narrow-band optical survey of a contiguous area of 1.95deg^2^, covered by the Cosmic Evolution Survey (COSMOS). Both optical narrow-band ({lambda}c=8150{AA} and {delta}{lambda}=120{AA}) and broad-band (B, V, g', r', i', and z') imaging observations were performed with the Subaru prime-focus camera, Suprime-Cam on the Subaru Telescope. We provide the largest contiguous narrow-band survey, targeting Ly{alpha} emitters (LAEs) at z~5.7. We find a total of 119 LAE candidates at z~5.7. Over the wide-area covered by this survey, we find no strong evidence for large-scale clustering of LAEs. We estimate a star formation rate (SFR) density of ~7x10-4M_{sun}_/yr/Mpc^3^ for LAEs at z~5.7 and compare it with previous measurements.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A76
- Title:
- COSMOS field radio-loud AGN population at z>1
- Short Name:
- J/A+A/567/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We select a sample of radio galaxies at high redshifts (z>1) in the COSMOS field by cross-matching optical and infrared (IR) images with the FIRST radio data. The aim of this study is to explore the high-z radio-loud (RL) active galactic nuclei (AGN) population at much lower luminosities than the classical samples of distant radio sources, which are similar to those of the local population of radio galaxies. Precisely, we extended a previous analysis focused on low-luminosity radio galaxies. The wide multiwavelength coverage provided by the COSMOS survey allows us to derive their spectral energy distributions (SEDs). We model them with our own developed technique 2SPD that includes old and young stellar populations and dust emission. When added to those previously selected, we obtain a sample of 74 RL AGN. The SED modeling returns several important quantities associated with the AGN and host properties. The resulting photometric redshifts range from z~0.7 to 3. The sample mostly includes compact radio sources but also 21 FR IIs sources; the radio power distribution of the sample covers ~10^31.5^-10^34.3^erg/s/Hz, thus straddling the local FR I/FR II break. The inferred range of stellar mass of the hosts is ~10^10^-10^11.5^M_{sun}_. The SEDs are dominated by the contribution from an old stellar population with an age of ~1-3Gyr for most of the sources. However, UV and mid-IR (MIR) excesses are observed for half of the sample. The dust luminosities inferred from the MIR excesses are in the range, L_dust_~10^43^-10^45.5^erg/s, which are associated with temperatures approximately of 350-1200K. Estimates of the UV component yield values of ~10^41.5^-10^45.5^erg/s at 2000{AA}. The UV emission is significantly correlated with both IR and radio luminosities; the former being the stronger link. However, the origin of UV and dust emission, whether it is produced by the AGN of by star formation, is still unclear. Our results show that this RLAGN population at high redshifts displays a wide variety of properties. Low-power radio galaxies, which are associated with UV- and IR-faint hosts are generally similar to red massive galaxies of the local FR Is. At the opposite side of the radio luminosity distribution, large MIR and UV excesses are observed in objects consistent with quasar-like AGN, as also proved by their high dust temperatures, which are more similar to local FR IIs.
- ID:
- ivo://CDS.VizieR/J/A+A/574/A112
- Title:
- COSMOS field variability-selected AGN nuclei
- Short Name:
- J/A+A/574/A112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Active galaxies are characterized by variability at every wavelength, with timescales from hours to years depending on the observing window. Optical variability has proven to be an effective way of detecting AGNs in imaging surveys, lasting from weeks to years. In the present work we test the use of optical variability as a tool to identify active galactic nuclei in the VST multiepoch survey of the COSMOS field, originally tailored to detect supernova events. We make use of the multiwavelength data provided by other COSMOS surveys to discuss the reliability of the method and the nature of our AGN candidates. The selection on the basis of optical variability returns a sample of 83 AGN candidates; based on a number of diagnostics, we conclude that 67 of them are confirmed AGNs (81% purity), 12 are classified as supernovae, while the nature of the remaining 4 is unknown. For the subsample of AGNs with some spectroscopic classification, we find that Type 1 are prevalent (89%) compared to Type 2 AGNs (11%). Overall, our approach is able to retrieve on average 15% of all AGNs in the field identified by means of spectroscopic or X-ray classification, with a strong dependence on the source apparent magnitude (completeness ranging from 26% to 5%). In particular, the completeness for Type 1 AGNs is 25%, while it drops to 6% for Type 2 AGNs. The rest of the X-ray selected AGN population presents on average a larger rms variability than the bulk of non-variable sources, indicating that variability detection for at least some of these objects is prevented only by the photometric accuracy of the data. The low completeness is in part due to the short observing span: we show that increasing the temporal baseline results in larger samples as expected for sources with a red-noise power spectrum. Our results allow us to assess the usefulness of this AGN selection technique in view of future wide-field surveys.