- ID:
- ivo://CDS.VizieR/J/A+A/620/A165
- Title:
- Fornax Deep Survey with VST. IV. dwarf galaxies
- Short Name:
- J/A+A/620/A165
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Fornax Deep Survey (FDS), an imaging survey in the u', g', r', and i'-bands, has a supreme resolution and image depth compared to the previous spatially complete Fornax Cluster Catalog (FCC). Our new data allows us to study the galaxies down to r'- band magnitude mr~=21mag (Mr'~=-10.5mag), which opens a new parameter regime to investigate the evolution of dwarf galaxies in the cluster environment. After the Virgo cluster, Fornax is the second nearest galaxy cluster to us, and with its different mass and evolutionary state, it provides a valuable comparison that makes it possible to understand the various evolutionary effects on galaxies and galaxy clusters. These data provide an important legacy dataset to study the Fornax cluster. We aim to present the Fornax Deep Survey (FDS) dwarf galaxy catalog, focusing on explaining the data reduction and calibrations, assessing the quality of the data, and describing the methods used for defining the cluster memberships and first order morphological classifications for the catalog objects. We also describe the main scientific questions that will be addressed based on the catalog. This catalog will also be invaluable for future follow-up studies of the Fornax cluster dwarf galaxies. As a first step we used the SExtractor fine-tuned for dwarf galaxy detection, to find galaxies from the FDS data, covering a 26deg^2^ area of the main cluster up to its virial radius, and the area around the Fornax A substructure. We made 2D-decompositions of the identified galaxies using GALFIT, measure the aperture colors, and the basic morphological parameters like concentration and residual flux fraction. We used color-magnitude, luminosity-radius and luminosity-concentration relations to separate the cluster galaxies from the background galaxies. We then divided the cluster galaxies into early- and late-type galaxies according to their morphology and gave first order morphological classifications using a combination of visual and parametric classifications. Our final catalog includes 14,095 galaxies. We classify 590 galaxies as being likely Fornax cluster galaxies, of which 564 are dwarfs (Mr'>-18.5mag) consisting our Fornax dwarf catalog. Of the cluster dwarfs we classify 470 as early-types, and 94 as late-type galaxies. Our final catalog reaches its 50% completeness limit at magnitude Mr'=-10.5mag and surface brightness <{mu}_e,r'_=26mag/arcsec^2^, which is approximately three magnitudes deeper than the FCC. Based on previous works and comparison with a spectroscopically confirmed subsample, we estimate that our final Fornax dwarf galaxy catalog has <~10% contamination from the background objects.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/623/A1
- Title:
- Fornax Deep Survey with VST. V. Isophote fit
- Short Name:
- J/A+A/623/A1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper is based on the multi-band (ugri) Fornax Deep Survey (FDS) with the VLT Survey Telescope (VST). We study bright early-type galaxies (m_B_<15mag) in the 9 square degrees around the core of the Fornax cluster, which covers the virial radius (R_vir~0.7Mpc). The main goal of the present work is to provide an analysis of the light distribution for all galaxies out to unprecedented limits (in radius and surface brightness) and to release the main products resulting from this analysis in all FDS bands. We give an initial comprehensive view of the galaxy structure and evolution as a function of the cluster environment. From the isophote fit, we derived the azimuthally averaged surface brightness profiles, the position angle, and ellipticity profiles as a function of the semi-major axis. In each band, we derived the total magnitudes, effective radii, integrated colours, and stellar mass-to-light ratios. The long integration times, the arcsec-level angular resolution of OmegaCam@VST, and the large covered area of FDS allow us to map the light and colour distributions out to large galactocentric distances (up to about 10^-15^Re) and surface brightness levels beyond mu_r_=27mag/arcsec^2^ (mu_B_>28mag/arcsec^2^). Therefore, the new FDS data allow us to explore in great detail the morphology and structure of cluster galaxies out to the region of the stellar halo. The analysis presented in this paper allows us to study how the structure of galaxies and the stellar population content vary with the distance from the cluster centre. In addition to the intra-cluster features detected in previous FDS works, we found a new faint filament between FCC 143 and FCC 147, suggesting an ongoing interaction. The observations suggest that the Fornax cluster is not completely relaxed inside the virial radius. The bulk of the gravitational interactions between galaxies happens in the W-NW core region of the cluster, where most of the bright early-type galaxies are located and where the intra-cluster baryons (diffuse light and globular clusters) are found. We suggest that the W-NW sub-clump of galaxies results from an infalling group onto the cluster, which has modified the structure of the galaxy outskirts (making asymmetric stellar halos) and has produced the intra-cluster baryons (ICL and GCs), concentrated in this region of the cluster.
- ID:
- ivo://CDS.VizieR/J/A+A/647/A100
- Title:
- Fornax Deep Survey with VST. XI.
- Short Name:
- J/A+A/647/A100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Galaxies either live in a cluster, a group, or in a field environment. In the hierarchical framework, the group environment bridges the field to the cluster environment, as field galaxies form groups before aggregating into clusters. In principle, environmental mechanisms, such as galaxy-galaxy interactions, can be more efficient in groups than in clusters due to lower velocity dispersion, which lead to changes in the properties of galaxies. This change in properties for group galaxies before entering the cluster environment is known as preprocessing. Whilst cluster and field galaxies are well studied, the extent to which galaxies become preprocessed in the group environment is unclear. We investigate the structural properties of cluster and group galaxies by studying the Fornax main cluster and the infalling Fornax A group, exploring the effects of galaxy preprocessing in this showcase example. Additionally, we compare the structural complexity of Fornax galaxies to those in the Virgo cluster and in the field. Our sample consists of 582 galaxies from the Fornax main cluster and Fornax A group. We quantified the light distributions of each galaxy based on a combination of aperture photometry, Sersic+PSF (point spread function) and multi-component decompositions, and non-parametric measures of morphology. From these analyses, we derived the galaxy colours, structural parameters, non-parametric morphological indices (Concentration C; Asymmetry A, Clumpiness S; Gini G; second order moment of light M_20_), and structural complexity based on multi-component decompositions. These quantities were then compared between the Fornax main cluster and Fornax A group. The structural complexity of Fornax galaxies were also compared to those in Virgo and in the field. We find significant (Kolmogorov-Smirnov test p-value <alpha=0.05) differences in the distributions of quantities derived from Sersic profiles (g'-r', r'-i', Re, and {bar}{mu}_e,r'_), and non-parametric indices (A and S) between the Fornax main cluster and Fornax A group. Fornax A group galaxies are typically bluer, smaller, brighter, and more asymmetric and clumpy. Moreover, we find significant cluster-centric trends with r'-i', Re, and {bar}{mu}_e,r'_, as well as A, S, G, and M_20_ for galaxies in the Fornax main cluster. This implies that galaxies falling towards the centre of the Fornax main cluster become fainter, more extended, and generally smoother in their light distribution. Conversely, we do not find significant group-centric trends for Fornax A group galaxies. We find the structural complexity of galaxies (in terms of the number of components required to fit a galaxy) to increase as a function of the absolute r'-band magnitude (and stellar mass), with the largest change occurring between -14mag<~Mr'<~-19,mag (7.5<~log_10_(M*/M_{sun}_)~=9.7). This same trend was found in galaxy samples from the Virgo cluster and in the field, which suggests that the formation or maintenance of morphological structures (e.g. bulges, bar) are largely due to the stellar mass of the galaxies, rather than the environment they reside in.
- ID:
- ivo://CDS.VizieR/J/A+A/637/A26
- Title:
- Fornax 3D project. Globular clusters
- Short Name:
- J/A+A/637/A26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Globular clusters (GCs) are found ubiquitously in massive galaxies and due to their old ages, they are regarded as fossil records of galaxy evolution. Spectroscopic studies of GC systems are often limited to the outskirts of galaxies, where GCs stand out against the galaxy background and serve as bright tracers of galaxy assembly. In this work we use the capabilities of the Multi Unit Explorer Spectrograph (MUSE) to extract a spectroscopic sample of 722 GCs in the inner regions (<3Reff) of 32 galaxies in the Fornax cluster. These galaxies were observed as part of the Fornax 3D project, a MUSE survey that targets early and late-type galaxies within the virial radius of Fornax. After accounting for the galaxy background in the GC spectra, we extracted line-of-sight velocities and determined metallicities of a subsample of 238 GCs. We found signatures of rotation within GC systems and comparing the GC kinematics and that of the stellar body shows that the angular momentum of the GC system reflects that of the stars, confirming the usefulness of GCs as kinematic tracers. While the red GCs prove to closely follow the metallicity profile of the host galaxy, the blue GCs show a large spread of metallicities but are generally more metal -poor than the host.
- ID:
- ivo://CDS.VizieR/J/MNRAS/504/3580
- Title:
- Fornax galaxy cluster NIR images & catalogs
- Short Name:
- J/MNRAS/504/3580
- Date:
- 06 Jan 2022 17:55:05
- Publisher:
- CDS
- Description:
- Ultra-compact dwarf galaxies (UCDs) were serendipitously discovered by spectroscopic surveys in the Fornax cluster 20 yr ago. Nowadays, it is commonly accepted that many bright UCDs are the nuclei of galaxies that have been stripped. However, this conclusion might be driven by biased samples of UCDs in high-density environments, on which most searches are based. With the deep optical images of the Fornax Deep Survey, combined with public near-infrared data, we revisit the UCD population of the Fornax cluster and search for UCD candidates, for the first time, systematically out to the virial radius of the galaxy cluster. Our search is complete down to magnitude m_g_=21mag or M_g_~-10.5mag at the distance of the Fornax cluster. The UCD candidates are identified and separated from foreground stars and background galaxies by their optical and near-infrared colours. This primarily utilizes the u-i/i-Ks diagram and a machine learning technique is employed to incorporate other colour combinations to reduce the number of contaminants. The newly identified candidates (44) in addition to the spectroscopically confirmed UCDs (61), increase the number of known Fornax UCD considerably (105). Almost all of the new UCD candidates are located outside the Fornax cluster core (360kpc), where all of the known UCDs were found. The distribution of UCDs within the Fornax cluster shows that a population of UCDs may form in low-density environments. This most likely challenges the current models of UCD formation.
1476. Fornax Globular 3
- ID:
- ivo://CDS.VizieR/J/AJ/114/1471
- Title:
- Fornax Globular 3
- Short Name:
- J/AJ/114/1471
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new B-V color-magnitude diagrams for Fornax globular cluster 3 and the surrounding field where our data reach one magnitude below the horizontal branch which is at V_HB_=21.28. After subtracting the field stars from the cluster CMD, we found no evidence for an intrinsic width of the red giant branch because the scatter is only slightly wider than the photometric errors. We determine that there is an intrinsic width to the horizontal branch because the scatter is larger than the photometric errors. After comparing our data with earlier photometry, we find 7 possible variable stars, both within and outside the instability strip, out of a total of 74 horizontal branch stars. We calculate the horizontal branch type of cluster 3 to be of intermediate color, -0.110+/-0.104, which when compared to Fornax cluster 1, having similar metallicity, suggests a second-parameter pair. Five carbon star candidates identified by Jorgensen & Jimenez (1997, Cat. <J/A+A/317/54>) are marked in the field-subtracted color-magnitude diagram. (c) 1997 American Astronomical Society.
1477. Fornax globular clusters
- ID:
- ivo://CDS.VizieR/J/A+A/657/A93
- Title:
- Fornax globular clusters
- Short Name:
- J/A+A/657/A93
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The Fornax cluster provides an unparalleled opportunity of investigating the formation and evolution of early-type galaxies in a dense environment in detail. We aim at kinematically characterising photometrically detected globular cluster (GC) candidates in the core of the cluster. We used VLT/VIMOS spectroscopic data from the FVSS survey in the Fornax cluster, covering one square degree around the central massive galaxy NGC 1399. We confirm a total of 777 GCs, almost doubling previously detected GCs, using the same dataset as was used before. Combined with previous literature radial velocity measurements of GCs in Fornax, we compile the most extensive spectroscopic GC sample of 2341 objects in this environment. We found that red GCs are mostly concentrated around major galaxies, while blue GCs are kinematically irregular and are widely spread throughout the core region of the cluster. The velocity dispersion profiles of blue and red GCs show a quite distinct behaviour. Blue GCs exhibit a sharp increase in the velocity dispersion profile from 250 to 400km/s within 5 arcminutes (~29kpc~1r_eff_ of NGC 1399) from the central galaxy. The velocity dispersion profile of red GCs follows a constant value between 200-300km/s until 8 arcminutes (~46kpc~1.6r_eff_, and then rises to 350km/s at 10 arcminutes (~58kpc~2r_eff_). Beyond 10 arcminutes and out to 40 arcminutes (~230kpc~8r_eff_), blue and red GCs show a constant velocity dispersion of 300+/-50km/s, indicating that both GC populations trace the cluster potential. We kinematically confirm and characterise the previously photometrically discovered overdensities of intra-cluster GCs. We found that these substructured intra-cluster regions in Fornax are dominated mostly by blue GCs.
- ID:
- ivo://CDS.VizieR/J/MNRAS/453/690
- Title:
- Fornax VST ATLAS catalogue
- Short Name:
- J/MNRAS/453/690
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a panoramic study of the Fornax dwarf spheroidal galaxy, using data obtained as part of the VLT Survey Telescope (VST) ATLAS Survey. The data presented here - a subset of the full survey - uniformly cover a region of 25deg^2^ centred on the galaxy, in g, r and i bands. This large area coverage reveals two key differences to previous studies of Fornax. First, data extending beyond the nominal tidal radius of the dwarf highlight the presence of a second distinct red giant branch population. This bluer red giant branch appears to be co-eval with the horizontal branch population. Secondly, a shell structure located approximately 1.4{deg} from the centre of Fornax is shown to be a mis-identified background overdensity of galaxies. This last result casts further doubt on the hypothesis that Fornax underwent a gas-rich merger in its relatively recent past.
- ID:
- ivo://CDS.VizieR/J/A+A/440/61
- Title:
- FORS spectroscopy of HDFS galaxies
- Short Name:
- J/A+A/440/61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present low resolution multi-object spectroscopy of an I-band magnitude limited (I_AB_~23-23.5) sample of galaxies located in an area centered on the Hubble Deep Field-South (HDFS). The observations were obtained using the Focal Reducer/low dispersion Spectrograph (FORS) on the ESO Very Large Telescope. Thirty-two primary spectroscopic targets in the HST-WFPC2 HDFS were supplemented with galaxies detected in the Infrared Space Observatory's survey of the HDFS and the ESO Imaging Deep Survey to comprise a sample of 100 galaxies for spectroscopic observations. Based on detections of several emission lines, such as [OII]3727, H{beta} and [OIII]5007, or of other spectroscopic features, we measured accurate redshifts for 50 objects in the central HDFS and flanking fields. The redshift range of the current sample of galaxies is 0.6-1.2, with a median redshift of 1.13 (at I~23.5 not corrected for completeness). The sample is dominated by starburst galaxies with only a small fraction of ellipticals (~10%). For the emission line objects, the extinction corrected [OII]3727 line strengths yield estimates of star formation rates in the range 0.5-30M_{sun}_/yr. We used the present data to derive the [OII]3727 luminosity function up to redshift of 1.2. When combined with [OII]3727 luminosity densities for the local and high redshift Universe, our results confirm the steep rise in the star formation rate (SFR) to z~1.3.
- ID:
- ivo://CDS.VizieR/J/MNRAS/475/193
- Title:
- Foundation Supernova Survey first data release
- Short Name:
- J/MNRAS/475/193
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Foundation Supernova Survey aims to provide a large, high-fidelity, homogeneous, and precisely calibrated low-redshift Type Ia supernova (SN Ia) sample for cosmology. The calibration of the current low-redshift SN sample is the largest component of systematic uncertainties for SN cosmology, and new data are necessary to make progress. We present the motivation, survey design, observation strategy, implementation, and first results for the Foundation Supernova Survey. We are using the Pan-STARRS telescope to obtain photometry for up to 800 SNe Ia at z<~0.1. This strategy has several unique advantages: (1) the Pan-STARRS system is a superbly calibrated telescopic system, (2) Pan-STARRS has observed 3/4 of the sky in grizyP1 making future template observations unnecessary, (3) we have a well-tested data-reduction pipeline, and (4) we have observed ~3000 high-redshift SNe Ia on this system. Here, we present our initial sample of 225 SN Ia grizP1 light curves, of which 180 pass all criteria for inclusion in a cosmological sample. The Foundation Supernova Survey already contains more cosmologically useful SNe Ia than all other published low-redshift SN Ia samples combined. We expect that the systematic uncertainties for the Foundation Supernova Sample will be two to three times smaller than other low-redshift samples. We find that our cosmologically useful sample has an intrinsic scatter of 0.111mag, smaller than other low-redshift samples. We perform detailed simulations showing that simply replacing the current low-redshift SN Ia sample with an equally sized Foundation sample will improve the precision on the dark energy equation-of-state parameter by 35 per cent, and the dark energy figure of merit by 72 per cent.