- ID:
- ivo://CDS.VizieR/J/MNRAS/437/2831
- Title:
- 4 transiting F-M binary systems
- Short Name:
- J/MNRAS/437/2831
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four transiting F-M binary systems with companions between 0.1 and 0.2M_{sun}_ in mass by the HATSouth survey. These systems have been characterized via a global analysis of the HATSouth discovery data, combined with high-resolution radial velocities and accurate transit photometry observations. We determined the masses and radii of the component stars using a combination of two methods: isochrone fitting of spectroscopic primary star parameters and equating spectroscopic primary star rotation velocity with spin-orbit synchronization. These new very low mass companions are HATS550-016B (0.110_-0.006_^+0.005^M_{sun}_, 0.147_-0.004_^+0.003^R_{sun}_), HATS551-019B (0.17_-0.01_^+0.01^M_sun}_, 0.18_-0.01_^+0.01^R_{sun}_), HATS551-021B (0.132_-0.005_^+0.014^M_sun}_, 0.154_-0.008_^+0.006^R_{sun}_) and HATS553-001B (0.20_-0.02_^+0.01^M_sun}_, 0.22_-0.01_^+0.01^R_{sun}_). We examine our sample in the context of the radius anomaly for fully convective low-mass stars. Combining our sample with the 13 other well-studied very low mass stars, we find a tentative 5 percent systematic deviation between the measured radii and theoretical isochrone models.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/704/1107
- Title:
- Transiting planet candidates in HATNet field 205
- Short Name:
- J/ApJ/704/1107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of HAT-P-8b, a transiting planet with mass M_p_=1.52^+0.18^_-0.16_M_J_, radius R_p_=1.50^+0.08^_-0.06_R_J_, and photometric period P=3.076days. HAT-P-8b has a somewhat inflated radius for its mass, and a somewhat large mass for its period. The host star is a solar-metallicity F dwarf, with mass M_*_=1.28+/-0.04M_{sun}_ and R_*_=1.58^+0.08^_-0.06R_{sun}_. HAT-P-8b was initially identified as one of the 32 transiting-planet candidates in HATNet field G205. We describe the procedures that we have used to follow up these candidates with spectroscopic and photometric observations, and we present a status report on our interpretation for 28 of the candidates. Eight are eclipsing binaries with orbital solutions whose periods are consistent with their photometric ephemerides; two of these spectroscopic orbits are single-lined and six are double-lined.
- ID:
- ivo://CDS.VizieR/J/AJ/154/224
- Title:
- Transiting planets in young clusters from K2
- Short Name:
- J/AJ/154/224
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators (P_rot_<2 days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R_{Earth}_, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ~4 R_{Earth}_ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.
- ID:
- ivo://CDS.VizieR/J/ApJ/712/925
- Title:
- Transition circumstellar disks in Ophiuchus
- Short Name:
- J/ApJ/712/925
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d~125pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40M_JUP_ and accretion rates ranging from <10^-11^ to 10^-7^M_{sun}_/yr, but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5M_JUP_) and negligible accretion (<10^-11^M_{sun}_/yr), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10^-3^ and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.
- ID:
- ivo://CDS.VizieR/J/ApJ/749/79
- Title:
- Transition disks. II. Southern MoC
- Short Name:
- J/ApJ/749/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from <~1 to 10M_JUP_, and accretion rates ranging from <~10^-11^ to 10^-7.7^M_{sun}_/yr. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole.
- ID:
- ivo://CDS.VizieR/J/AJ/156/218
- Title:
- Transit light curves of TRAPPIST-1 planets
- Short Name:
- J/AJ/156/218
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The TRAPPIST-1 planetary system provides an exceptional opportunity for the atmospheric characterization of temperate terrestrial exoplanets with the upcoming James Webb Space Telescope (JWST). Assessing the potential impact of stellar contamination on the planets' transit transmission spectra is an essential precursor to this characterization. Planetary transits themselves can be used to scan the stellar photosphere and to constrain its heterogeneity through transit depth variations in time and wavelength. In this context, we present our analysis of 169 transits observed in the optical from space with K2 and from the ground with the SPECULOOS and Liverpool telescopes. Combining our measured transit depths with literature results gathered in the mid-/near-IR with Spitzer/IRAC and HST/WFC3, we construct the broadband transmission spectra of the TRAPPIST-1 planets over the 0.8-4.5 {mu}m spectral range. While planet b, d, and f spectra show some structures at the 200-300 ppm level, the four others are globally flat. Even if we cannot discard their instrumental origins, two scenarios seem to be favored by the data: a stellar photosphere dominated by a few high-latitude giant (cold) spots, or, alternatively, by a few small and hot (3500-4000 K) faculae. In both cases, the stellar contamination of the transit transmission spectra is expected to be less dramatic than predicted in recent papers. Nevertheless, based on our results, stellar contamination can still be of comparable or greater order than planetary atmospheric signals at certain wavelengths. Understanding and correcting the effects of stellar heterogeneity therefore appears essential for preparing for the exploration of TRAPPIST-1 with JWST.
- ID:
- ivo://CDS.VizieR/II/278
- Title:
- Transits observed in OGLE 2001-2003
- Short Name:
- II/278
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results of an extensive photometric search for planetary and low-luminosity object transits in the Galactic disk stars commencing the third phase of the Optical Gravitational Lensing Experiment - OGLE-III.
- ID:
- ivo://CDS.VizieR/J/A+A/509/A4
- Title:
- Transits of 12 new exoplanet candidates
- Short Name:
- J/A+A/509/A4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We used VLT/VIMOS images in the V band to obtain light curves of extrasolar planetary transits OGLE-TR-111 and OGLE-TR-113, and candidate planetary transits: OGLE-TR-82, OGLE-TR-86, OGLE-TR-91, OGLE-TR-106, OGLE-TR-109, OGLE-TR-110, OGLE-TR-159, OGLE-TR-167, OGLE-TR-170, OGLE-TR-171. Using difference imaging photometry, we were able to achieve millimagnitude errors in the individual data points. We present the analysis of the data and the light curves, by measuring transit amplitudes and ephemerides, and by calculating geometrical parameters for some of the systems. We observed 9 OGLE objects at the predicted transit moments. Two other transits were shifted in time by a few hours. For another seven objects we expected to observe transits during the VIMOS run, but they were not detected. The stars OGLE-TR-111 and OGLE-TR-113 are probably the only OGLE objects in the observed sample to host planets, with the other objects being very likely eclipsing binaries or multiple systems. In this paper we also report on four new transiting candidates which we have found in the data.
- ID:
- ivo://CDS.VizieR/J/AJ/159/150
- Title:
- Transit times of 11 hot Jupiters
- Short Name:
- J/AJ/159/150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Many of the known hot Jupiters are formally unstable to tidal orbital decay. The only hot Jupiter for which orbital decay has been directly detected is WASP-12, for which transit-timing measurements spanning more than a decade have revealed that the orbital period is decreasing at a rate of dP/dt~10^-9^, corresponding to a reduced tidal quality factor of about 2x10^5^. Here, we present a compilation of transit-timing data for WASP-12 and 11 other systems that are especially favorable for detecting orbital decay: KELT-16; WASP-18, 19, 43, 72, 103, 114, and 122; HAT-P-23; HATS-18; and OGLE-TR-56. For most of these systems we present new data that extend the time baseline over which observations have been performed. None of the systems besides WASP-12 display convincing evidence for period changes, with typical upper limits on dP/dt on the order of 10^-9^ or 10^-10^, and lower limits on the reduced tidal quality factor on the order of 10^5^. One possible exception is WASP-19, which shows a statistically significant trend, although it may be a spurious effect of starspot activity.
- ID:
- ivo://CDS.VizieR/J/ApJS/208/22
- Title:
- Transit timing variation for 12 planetary pairs
- Short Name:
- J/ApJS/208/22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We extract transit timing variation (TTV) signals for 12 pairs of transiting planet candidates that are near first-order mean motion resonances (MMR), using publicly available Kepler light curves (Q0-Q14). These pairs show significant sinusoidal TTVs with theoretically predicted periods, which demonstrate these planet candidates are orbiting and interacting in the same system. Although individual masses cannot be accurately extracted based only on TTVs because of the well-known degeneracy between mass and eccentricity, TTV phases and amplitudes can still place upper limits on the masses of the candidates, confirming their planetary nature. Furthermore, the mass ratios of these planet pairs can be relatively tightly constrained using these TTVs. The planetary pair in KOI 880 seems to have particularly high mass and density ratios, which might indicate very different internal compositions of these two planets. Some of these newly confirmed planets are also near MMR with other candidates in the system, forming unique resonance chains (e.g., KOI 500).