- ID:
- ivo://CDS.VizieR/J/ApJ/899/128
- Title:
- Validated & new members of NGC 7000/IC 5070 Complex
- Short Name:
- J/ApJ/899/128
- Date:
- 14 Mar 2022 07:05:45
- Publisher:
- CDS
- Description:
- We examine the clustering and kinematics of young stellar objects (YSOs) in the North America/Pelican Nebulae, as revealed by Gaia astrometry, in relation to the structure and motions of the molecular gas, as indicated in molecular-line maps. The Gaia parallaxes and proper motions allow us to significantly refine previously published lists of YSOs, demonstrating that many of the objects previously thought to form a distributed population turn out to be nonmembers. The members are subdivided into at least six spatio-kinematic groups, each of which is associated with its own molecular cloud component or components. Three of the groups are expanding, with velocity gradients of 0.3-0.5km/s/pc, up to maximum velocities of ~8km/s away from the groups' centers. The two known O-type stars associated with the region, 2MASS J20555125+4352246 and HD 199579, are rapidly escaping one of these groups, following the same position-velocity relation as the low-mass stars. We calculate that a combination of gas expulsion and tidal forces from the clumpy distribution of molecular gas could impart the observed velocity gradients within the groups. However, on a global scale, the relative motions of the groups do not appear either divergent or convergent. The velocity dispersion of the whole system is consistent with the kinetic energy gained due to gravitational collapse of the complex. Most of the stellar population has ages similar to the freefall timescales for the natal clouds. Thus, we suggest the nearly freefall collapse of a turbulent molecular cloud as the most likely scenario for star formation in this complex.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/890/130
- Title:
- VANDAM survey of Orion protostars. II.
- Short Name:
- J/ApJ/890/130
- Date:
- 07 Mar 2022 13:26:15
- Publisher:
- CDS
- Description:
- We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/submillimeter Array at 0.87mm at a resolution of ~0.1" (40au), including observations with the Very Large Array at 9mm toward 148 protostars at a resolution of ~0.08" (32au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are 44.9_-3.4_^+5.8^, 37.0_-3.0_^+4.9^, and 28.5_-2.3_^+3.7^au, respectively, and the mean protostellar dust disk masses are 25.9_-4.0_^+7.7^, 14.9_-2.2_^+3.8^, 11.6_-1.9_^+3.5^M_{Earth}_, respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87mm continuum sources plus 42 nondetections) have disk radii greater than 50au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.
- ID:
- ivo://CDS.VizieR/V/151
- Title:
- VANDELS High-Redshift Galaxy Evolution
- Short Name:
- V/151
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- VANDELS is a new ESO spectroscopic Public Survey targeting the high-redshift Universe. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the survey is obtaining ultra-deep optical spectroscopy of around 2100 galaxies in the redshift interval 1.0<z<7.0, with 85% of its targets selected to be at z>=3. The fundamental aim of the survey is to provide the high signal-to-noise spectra necessary to measure key physical properties such as stellar population ages, metallicities and outflow velocities from detailed absorption-line studies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy dataset for exploring the physics underpinning high-redshift galaxy evolution.
- ID:
- ivo://CDS.VizieR/J/A+A/416/811
- Title:
- V and R CCD photometry of visual binaries
- Short Name:
- J/A+A/416/811
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- 429 CCD measurements of relative positions and magnitude differences in V and R photometric bands for 165 visual double and multiple stars are given. CCD frames were taken at the 1.52m Spanish telescope of the Spanish-German Center of Astronomy at Calar Alto (Almeria, Spain). During the reduction process a "Tepui" function was used as the PSF function.
- ID:
- ivo://CDS.VizieR/J/AJ/159/21
- Title:
- V and Rc light curves of medium-bright PPNe
- Short Name:
- J/AJ/159/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 10 years of new photometric monitoring of the light variability of five evolved stars with strong mid-infrared emission from surrounding dust. Three are known carbon-rich proto-planetary nebulae (PPNe) with F-G spectral types; the nature of the other two was previously unknown. For the three PPNe, we determine or refine the pulsation periods of IRAS04296+3429 (71 days), 06530-0213 (80 days), and 23304+6147 (84 days). A secondary period was found for each, with a period ratio P_2_/P_1_ of 0.9. The light variations are small, 0.1-0.2mag. These are similar to values found in other PPNe. The other two are found to be giant stars. IRAS09296+1159 pulsates with a period of only 47 days but reaches pulsational light variations of 0.5mag. Supplemental spectroscopy reveals the spectrum of a CH carbon star. IRAS08359-1644 is a G1III star that does not display pulsational variability; rather, it shows nonperiodic decreases of brightness of up to 0.5mag over this 10 year interval. These drops in brightness are reminiscent of the light curves of R Corona Borealis variables, but with much smaller decreases in brightness and are likely due to transient dust obscuration. Its spectral energy distribution is very similar to that of the unusual oxygen-rich giant star HDE233517, which possesses mid-infrared hydrocarbon emission features. These two non-PPNe turn out to be members of the rare group of giant stars with large mid-infrared excesses due to dust, objects which presumably have interesting evolutionary histories.
- ID:
- ivo://CDS.VizieR/J/A+A/550/A120
- Title:
- Variability classification of CoRoT targets
- Short Name:
- J/A+A/550/A120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an improved method for automated stellar variability classification, using fundamental parameters derived from high resolution spectra, with the goal to improve the variability classification obtained using information derived from CoRoT light curves only. Although we focus on Giraffe spectra and CoRoT light curves in this work, the methods are much more widely applicable. In order to improve the variability classification obtained from the photometric time series, only rough estimates of the stellar physical parameters (Teff and logg) are needed because most variability types that overlap in the space of time series parameters, are well separated in the space of physical parameters (e.g. {gamma} Dor/SPB or {delta} Sct/{beta} Cep). In this work, several state-of-the-art machine learning techniques are combined to estimate these fundamental parameters from high resolution Giraffe spectra. Next, these parameters are used in a multi-stage Gaussian-Mixture classifier to perform an improved supervised variability classification of CoRoT light curves. The variability classifier can be used independently of the regression module that estimates the physical parameters, so that non-spectroscopic estimates derived e.g. from photometric colour indices can be used instead. Teff and logg are derived from Giraffe spectra, for 6832 CoRoT targets. The use of those parameters in addition to information extracted from the CoRoT light curves, significantly improves the results of our previous automated stellar variability classification. Several new pulsating stars are identified with high confidence levels, including hot pulsators such as SPB and {beta} Cep, and several {gamma} Dor-{delta} Sct hybrids. From our samples of new {gamma} Dor and {delta} Sct stars, we find strong indications that the instability domains for both types of pulsators are larger than previously thought.
- ID:
- ivo://CDS.VizieR/J/ApJ/709/1042
- Title:
- Variability in C-rich proto-PNe.
- Short Name:
- J/ApJ/709/1042
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out long-term (14 years) V and R photometric monitoring of 12 carbon-rich proto-planetary nebulae. The light and color curves display variability in all of them. The light curves are complex and suggest multiple periods, changing periods, and/or changing amplitudes, which are attributed to pulsation. A dominant period has been determined for each and found to be in the range of ~150 days for the coolest (G8) to 35-40 days for the warmest (F3). A clear, linear inverse relationship has been found in the sample between the pulsation period and the effective temperature and also an inverse relationship between the amplitude of light variation and the effective temperature. These are consistent with the expectation for a pulsating post-asymptotic giant branch (post-AGB) star evolving toward higher temperature at constant luminosity. The published spectral energy distributions and mid-infrared images show these objects to have cool (200K), detached dust shells and published models imply that intensive mass loss ended 400-2000 years ago.
- ID:
- ivo://CDS.VizieR/J/A+A/525/A37
- Title:
- Variability indexes of QSOs in SDSS Stripe 82
- Short Name:
- J/A+A/525/A37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We identified 8744 quasars in the Light-Motion Curve Catalogue (LMCC; Bramich et al., 2008MNRAS.386..887B, http://das.sdss.org/value_added/stripe_82_variability/SDSS_82_public/) for the stripe 82 of the Sloan Digital Sky Survey (SDSS). The light curves were used, after correction for photometric outliers, to compute individual noise-corrected first-order structure functions (variance as a function of time-lag) binned into rest frame time-lag intervals. The mean value of the corrected structure function at rest frame time-lags from 300 to 600 days is found to be a useful variability index for the statistical investigation of quasar samples with redshifts up to ~3. For each quasar, the variability indexes for the five SDSS bands are given along with the equatorial coordinates, redshift, mean g band magnitude, absolute i band magnitude, and a remark on spectral peculiarities.
- ID:
- ivo://CDS.VizieR/J/ApJ/901/9
- Title:
- Variability in protoplanetary nebulae. VII. 5 LCs
- Short Name:
- J/ApJ/901/9
- Date:
- 15 Feb 2022 13:25:51
- Publisher:
- CDS
- Description:
- We have monitored over a 10-year interval the light variations of five evolved stars with very large mid-infrared excesses. All five objects appear to have oxygen-rich or mixed oxygen-rich and carbon-rich chemistries. They all vary in light: four over a small range of ~0.2mag and the fifth over a larger range of ~0.7mag. Spectral types range from G2 to B0. Periodic pulsations are found for the first time in the three cooler ones, IRAS18075-0924 (123d), 19207+2023 (96d), and 20136+1309 (142d). No significant periodicity is found in the hotter ones, but they appear to vary on a shorter timescale of a few days or less. Two also show some evidence of longer-term periodic variations (~4yr). Three appear to be protoplanetary nebulae (PPNe), in the post-asymptotic giant branch (post-AGB) phase of stellar evolution. Their light variations are in general agreement with the relationships among temperature, pulsation period, and pulsation amplitude found in previously studied PPNe. The other two, however, appear to have too low a luminosity (1000-1500L_{sun}_), based on Gaia distances, to be in the post-AGB phase. Instead, they appear to be Milky Way analogs of the recently identified class of dusty post-red giant branch (post-RGB) stars found in the Magellanic Clouds, which likely had their evolution interrupted by interaction with a binary companion. If this is the case, then these would be among the first dusty post-RGB objects identified in the the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/766/116
- Title:
- Variability in proto-PNe. II.
- Short Name:
- J/ApJ/766/116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out a detailed observational study of the light, color, and velocity variations of two bright, carbon-rich proto-planetary nebulae, IRAS 22223+4327 and 22272+5435. The light curves are based upon our observations from 1994 to 2011, together with published data by Arkhipova and collaborators. They each display four significant periods, with primary periods for IRAS 22223+4327 and 22272+5435 being 90 and 132 days, respectively. For each of them, the ratio of secondary to primary period is 0.95, a value much different from that found in Cepheids, but which may be characteristic of post-asymptotic giant branch (AGB) stars. Fewer significant periods are found in the smaller radial velocity data sets, but they agree with those of the light curves. The color curves generally mimic the light curves, with the objects reddest when faintest. A comparison in seasons when there exist contemporaneous light, color, and velocity curves reveals that the light and color curves are in phase, while the radial velocity curves are ~0.25 P out of phase with the light curves. Thus they differ from what is seen in Cepheids, in which the radial velocity curve is 0.50 P out of phase with the light curve. Comparison of the observed periods and amplitudes with those of post-AGB pulsation models shows poor agreement, especially for the periods, which are much longer than predicted. These observational data, particularly the contemporaneous light, color, and velocity curves, provide an excellent benchmark for new pulsation models of cool stars in the post-AGB, proto-planetary nebula phase.