- ID:
- ivo://CDS.VizieR/J/ApJ/635/214
- Title:
- Chandra X-ray sources and NIR identifications
- Short Name:
- J/ApJ/635/214
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b)~(28.5{deg}, 0.0{deg}), where no discrete X-ray source had been reported previously. We have detected 274 new point X-ray sources (4{sigma} confidence), as well as strong Galactic diffuse emission within two partially overlapping ACIS-I fields (~250arcmin^2^ in total). The point-source sensitivity was 3x10^-15^ergs/s/cm^2^ in the hard X-ray band (2-10keV) and 2x10^-16^ergs/s/cm^2^ in the soft band (0.5-2keV). The sum of all the detected point-source fluxes accounts for only 10% of the total X-ray flux in the field of view. Following up the Chandra observation, we have performed a near-infrared (NIR) survey with SofI at ESO/NTT. Almost all the soft X-ray sources have been identified in the NIR, and their spectral types are consistent with main-sequence stars, suggesting that most of them are nearby X-ray-active stars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/736/90
- Title:
- Chandra X-ray sources of NGC 1399
- Short Name:
- J/ApJ/736/90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a wide-field study of the globular cluster (GC)/low-mass X-ray binary (LMXB) connection in the giant elliptical NGC 1399. The large field of view of the Advanced Camera for Surveys/WFC, combined with Hubble Space Telescope and Chandra high resolution, allow us to constrain the LMXB formation scenarios in elliptical galaxies. We confirm that NGC 1399 has the highest LMXB fraction in GCs of all nearby elliptical galaxies studied so far, even though the exact value depends on galactocentric distance due to the interplay of a differential GC versus galaxy light distribution and the GC color dependence. In fact, LMXBs are preferentially hosted by bright, red GCs out to >5R_eff_ of the galaxy light. The finding that GCs hosting LMXBs follow the radial distribution of their parent GC population argues against the hypothesis that the external dynamical influence of the galaxy affects the LMXB formation in GCs. On the other hand, field-LMXBs closely match the host galaxy light, thus indicating that they are originally formed in situ and not inside GCs. We measure GC structural parameters, finding that the LMXB formation likelihood is influenced independently by mass, metallicity, and GC structural parameters. In particular, the GC central density plays a major role in predicting which GCs host accreting binaries. Finally, our analysis shows that LMXBs in GCs are marginally brighter than those in the field, and in particular the only color-confirmed GC with L_X_>10^39^erg/s shows no variability, which may indicate a superposition of multiple LMXBs in these systems.
- ID:
- ivo://CDS.VizieR/J/A+A/440/321
- Title:
- Chemical abundances in 43 metal-poor stars
- Short Name:
- J/A+A/440/321
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni and Ba for 43 metal-poor field stars in the solar neighbourhood, most of them subgiants or turn-off-point stars, with iron abundances [Fe/H] ranging from -0.4 to -3.0. About half of this sample has not been analysed spectroscopically in detail before. Effective temperatures were estimated from uvby photometry, and surface gravities primarily from Hipparcos parallaxes. The analysis is differential relative to the Sun, and carried out with plane-parallel MARCS models. Various sources of error are discussed and found to contribute a total error of about 0.1-0.2dex for most elements, while relative abundances, such as [Ca/Fe], are most probably more accurate. For the oxygen abundances, determined in an NLTE analysis of the 7774{AA} triplet lines, the errors may be somewhat larger.
- ID:
- ivo://CDS.VizieR/J/ApJ/824/5
- Title:
- Chemical abundances in NGC 5024 (M53)
- Short Name:
- J/ApJ/824/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5m telescope. M53 is of interest because previous studies based on the morphology of the cluster's horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H]=-2.07 with a standard deviation of 0.07dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na-O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.
- ID:
- ivo://CDS.VizieR/J/MNRAS/330/75
- Title:
- Chemical abundances in UV-selected galaxies
- Short Name:
- J/MNRAS/330/75
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We discuss the chemical properties of a sample of UV-selected intermediate-redshift (0<=z<=0.4) galaxies in the context of their physical nature and star-formation history. This work represents an extension of our previous studies of the rest-frame UV-luminosity function (Treyer et al., 1998, Cat. <J/MNRAS/300/303>) and the star-formation properties of the same sample (Sullivan et al., 2000, Cat. <J/MNRAS/312/442>). We revisit the optical spectra of these galaxies and perform further emission-line measurements restricting the analysis to those spectra with the full set of emission lines required to derive chemical abundances. Our final sample consists of 68 galaxies with heavy-element abundance ratios and both UV and CCD B-band photometry.
- ID:
- ivo://CDS.VizieR/J/A+A/326/751
- Title:
- Chemical composition of halo and disk stars
- Short Name:
- J/A+A/326/751
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Table A1 lists the Stromgren photometry together with color excesses, E(b-y), photometric metallicities, [Fe/H] , calculated from the calibrations of Schuster & Nissen (1989A&A...221...65S), and absolute magnitudes, M(V), and distances derived with the equations of Nissen & Schuster (1991A&A...251..457N) using the photometric metallicities. Table A2 contains coordinates, proper motions and radial velocities for the program stars as well as distances calculated from the calibrations Nissen & Schuster (1991A&A...251..457N) using the spectroscopic metallicities scaled to our photometric [Fe/H] system. Table A3 gives a list of the 209 spectral lines, which were analyzed, arranged element by element. The table contains the wavelength, the excitation potential of the lower level corresponding to the line, the gf-value, the enhancement factor of the classical van der Waals damping constant, the statistical weight of the upper level, and the equivalent widths measured for the two "standard" stars, HD 22879 and HD 76932. Table A4 contains the measured equivalent widths for all program stars. Table A5 gives abundance ratios and kinematical as well as orbital parameters for the program stars. First are given the data for the 16 disk stars, then follows the 14 halo stars.
- ID:
- ivo://CDS.VizieR/J/A+A/459/871
- Title:
- Chemically peculiar stars in the LMC
- Short Name:
- J/A+A/459/871
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high precision photometric Delta a observations of 417 objects in NGC 2136/7 and its surrounding field, of which five turned out to be bona fide magnetic CP stars. In addition, we discovered two Be/Ae stars. This intermediate band photometric system samples the depth of the 520nm flux depression by comparing the flux at the center with the adjacent regions with bandwidths of 11nm to 23nm. The Delta a photometric system is most suitable for detecting CP2 stars with high efficiency, but is also capable of detecting a small percentage of non-magnetic CP objects. From our investigations of NGC 1711, NGC 1866, NGC 2136/7, their surroundings, and one independent field of the LMC population, we derive an occurrence of classical chemically peculiar stars of 2.2(6)% in the LMC, which is only half the value found in the Milky Way. The mass and age distribution of the photometrically detected CP stars is not different from that of similar objects in galactic open clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/761/33
- Title:
- Chemical properties of 89 stars in the LMC disk
- Short Name:
- J/ApJ/761/33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have used high-resolution spectra obtained with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to derive kinematic properties and chemical abundances of Fe, O, Mg, and Si for 89 stars in the disk of the Large Magellanic Cloud (LMC). The derived metallicity and [{alpha}/Fe], obtained as the average of O, Mg, and Si abundances, allow us to draw a preliminary scheme of the star formation history of this region of the LMC. The derived metallicity distribution shows two main components: one component (comprising ~84% of the sample) peaks at [Fe/H]=-0.48dex and it shows an [{alpha}/Fe] ratio slightly under solar ([{alpha}/Fe]~-0.1dex). This population probably originated in the main star formation event that occurred 3-4Gyr ago (possibly triggered by tidal capture of the Small Magellanic Cloud). The other component (comprising ~16% of the sample) peaks at [Fe/H]~-0dex and it shows an [{alpha}/Fe]~0.2dex. This population was probably generated during the long quiescent epoch of star formation between the first episode and the most recent bursts. Indeed, in our sample we do not find stars with chemical properties similar to the old LMC globular clusters nor to the iron-rich and {alpha}-poor stars recently found in the LMC globular cluster NGC 1718 and also predicted to be in the LMC field, thus suggesting that both of these components are small (<1%) in the LMC disk population.
- ID:
- ivo://CDS.VizieR/J/ApJ/806/268
- Title:
- Cheshire Cat galaxies: redshifts and magnitudes
- Short Name:
- J/ApJ/806/268
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X-ray study of this system reveals that it is experiencing a line of sight merger between two groups with a roughly equal mass ratio with a relative velocity of ~1350 km/s. One group was most likely a low-mass fossil group, while the other group would have almost fit the classical definition of a fossil group. The collision manifests itself in a bimodal galaxy velocity distribution, an elevated central X-ray temperature and luminosity indicative of a shock, and gravitational arc centers that do not coincide with either large elliptical galaxy. One of the luminous elliptical galaxies has a double nucleus embedded off-center in the stellar halo. The luminous ellipticals should merge in less than a Gyr, after which observers will see a massive 1.2-1.5x10^14^ M_{sun}_ fossil group with an M_r_=-24.0 brightest group galaxy at its center. Thus, the Cheshire Cat offers us the first opportunity to study a fossil group progenitor. We discuss the limitations of the classical definition of a fossil group in terms of magnitude gaps between the member galaxies. We also suggest that if the merging of fossil (or near-fossil) groups is a common avenue for creating present-day fossil groups, the time lag between the final galactic merging of the system and the onset of cooling in the shock-heated core could account for the observed lack of well-developed cool cores in some fossil groups.
- ID:
- ivo://CDS.VizieR/J/ApJ/765/156
- Title:
- CH(G) index of SDSS evolved stars
- Short Name:
- J/ApJ/765/156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have measured the CH G band (CH(G)) index for evolved stars in the globular cluster M3 based on the Sloan Digital Sky Survey (SDSS) spectroscopic survey. It is found that there is a useful way to select red giant branch (RGB) stars from the contamination of other evolved stars such as asymptotic giant branch (AGB) and red horizontal branch (RHB) stars by using the CH(G) index versus (g-r)_0_ diagram if the metallicity is known from the spectra. When this diagram is applied to field giant stars with similar metallicity, we establish a calibration of CH(G)=1.625(g-r)_0_-1.174(g-r)^2^_0_-0.934. This method is confirmed by stars with [Fe/H]~-2.3 where spectra of member stars in globular clusters M15 and M92 are available in the SDSS database. We thus extend this kind of calibration to every individual metallicity bin ranging from [Fe/H]~-3.0 to [Fe/H]~0.0 by using field red giant stars with 0.4<=(g-r)_0_<=1.0. The metallicity-dependent calibrations give CH(G)=1.625(g-r)_0_-1.174(g-r)^2^_0_+0.060[Fe/H]-0.830 for -3.0<[Fe/H]<=-1.2 and CH(G)=0.953(g-r)_0_-0.655(g-r)^2^_0_+0.060[Fe/H]-0.650 for -1.2<[Fe/H]<0.0. The calibrations are valid for the SDSS spectroscopic data set, and they cannot be applied blindly to other data sets. With the two calibrations, a significant number of the contaminating stars (AGB and RHB stars) were excluded and thus a clear sample of red giant stars is obtained by selecting stars within +/-0.05mag of the calibration. The sample is published online and it is expected that this large and clean sample of RGB stars will provide new information on the formation and evolution of the Galaxy.