- ID:
- ivo://CDS.VizieR/J/ApJ/815/33
- Title:
- A Hubble diagram for quasars
- Short Name:
- J/ApJ/815/33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new method to test the {Lambda}CDM cosmological model and to estimate cosmological parameters based on the nonlinear relation between the ultraviolet and X-ray luminosities of quasars. We built a data set of 1138 quasars by merging several samples from the literature with X-ray measurements at 2keV and SDSS photometry, which was used to estimate the extinction-corrected 2500{AA} flux. We obtained three main results: (1) we checked the nonlinear relation between X-ray and UV luminosities in small redshift bins up to z~6, confirming that the relation holds at all redshifts with the same slope; (2) we built a Hubble diagram for quasars up to z~6, which is well matched to that of supernovae in the common z=0-1.4 redshift interval and extends the test of the cosmological model up to z~6; and (3) we showed that this nonlinear relation is a powerful tool for estimating cosmological parameters. Using the present data and assuming a {Lambda}CDM model, we obtain {Omega}_M_=0.22_-0.08_^+0.10^ and {Omega}_{Lambda}_=0.92-0.30_^+0.18^ ({Omega}=0.28+/-0.04 and {Omega}_{Lambda}_=0.73+/-0.08 from a joint quasar-SNe fit). Much more precise measurements will be achieved with future surveys. A few thousand SDSS quasars already have serendipitous X-ray observations from Chandra or XMM-Newton, and at least 100000 quasars with UV and X-ray data will be made available by the extended ROentgen Survey with an Imaging Telescope Array all-sky survey in a few years. The Euclid, Large Synoptic Survey Telescope, and Advanced Telescope for High ENergy Astrophysics surveys will further increase the sample size to at least several hundred thousand. Our simulations show that these samples will provide tight constraints on the cosmological parameters and will allow us to test for possible deviations from the standard model with higher precision than is possible today.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/472/2085
- Title:
- ALHAMBRA fields type-I AGN with ELDAR
- Short Name:
- J/MNRAS/472/2085
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ELDAR, a new method that exploits the potential of medium- and narrow-band filter surveys to securely identify active galactic nuclei (AGN) and determine their redshifts. Our methodology improves on traditional approaches by looking for AGN emission lines expected to be identified against the continuum, thanks to the width of the filters. To assess its performance, we apply ELDAR to the data of the ALHAMBRA survey, which covered an effective area of 2.38deg^2^ with 20 contiguous medium-band optical filters down to F814W=24.5. Using two different configurations of ELDAR in which we require the detection of at least 2 and 3 emission lines, respectively, we extract two catalogues of type-I AGN. The first is composed of 585 sources (79% of them spectroscopically-unknown) down to F814W=22.5 at z_phot_>1, which corresponds to a surface density of 209 deg-2. In the second, the 494 selected sources (83% of them spectroscopically-unknown) reach F814W=23 at z_phot_>1.5, for a corresponding number density of 176deg^-2^. Then, using samples of spectroscopically-known AGN in the ALHAMBRA fields, for the two catalogues we estimate a completeness of 73% and 67%, and a redshift precision of 1.01% and 0.86% (with outliers fractions of 8.1% and 5.8%). At z>2, where our selection performs best, we reach 85% and 77% completeness and we find no contamination from galaxies.
- ID:
- ivo://CDS.VizieR/J/MNRAS/380/162
- Title:
- Aligned radio polarizations of quasars
- Short Name:
- J/MNRAS/380/162
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have used the very large Jodrell Bank VLA Astrometric Survey/Cosmic Lens All-Sky Survey 8.4-GHz surveys of flat-spectrum radio sources to test the hypothesis that there is a systematic alignment of polarization position angle vectors on cosmological scales of the type claimed by Hutsemekers et al. (2005, Cat. <J/A+A/441/915>). The polarization position angles of 4290 sources with polarized flux density 1mJy have been examined. They do not reveal large-scale alignments either as a whole or when split in half into high-redshift (z>=1.24) and low-redshift subsamples. Nor do the radio sources which lie in the specific areas covered by Hutsemekers et al. (<J/A+A/441/915>) show any significant effect. We have also looked at the position angles of parsec-scale jets derived from very long baseline interferometry observations and again find no evidence for systematic alignments. Finally, we have investigated the correlation between the polarization position angle and those of the parsec-scale jets. As expected, we find that there is a tendency for the polarization angles to be perpendicular to the jet angles. However, the difference in jet and polarization position angles does not show any systematic trend in different parts of the sky.
- ID:
- ivo://CDS.VizieR/J/A+A/441/915
- Title:
- Alignments of quasar polarization vectors
- Short Name:
- J/A+A/441/915
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on a new sample of 355 quasars with significant optical polarization and using complementary statistical methods, we confirm that quasar polarization vectors are not randomly oriented over the sky with a probability often in excess of 99.9%.
- ID:
- ivo://CDS.VizieR/J/ApJS/171/61
- Title:
- All-Sky Survey of Flat-Spectrum Radio Sources
- Short Name:
- J/ApJS/171/61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have assembled an 8.4GHz survey of bright, flat-spectrum ({alpha}>-0.5) radio sources with nearly uniform extragalactic (|b|>10{deg}) coverage for sources brighter than S_4.8GHz_=65mJy. The catalog is assembled from existing observations (especially CLASS and the Wright et al., Cat VIII/38, PMN-CA survey), augmented by reprocessing of archival VLA and ATCA data and by new observations to fill in coverage gaps. We refer to this program as CRATES, the Combined Radio All-Sky Targeted Eight GHz Survey. The resulting catalog provides precise positions, subarcsecond structures, and spectral indices for some 11000 sources. We describe the morphology and spectral index distribution of the sample and comment on the survey's power to select several classes of interesting sources, especially high-energy blazars. Comparison of CRATES with other high-frequency surveys also provides unique opportunities for identification of high-power radio sources.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A59
- Title:
- ALMA continuum-subtracted datacubes for 48 QSOs
- Short Name:
- J/A+A/630/A59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the stacking analysis of a sample of 48 quasi-stellar objects (QSOs) at 4.5<z<7.1 detected by the Atacama Large Millimetre Array (ALMA) in the [CII] {lambda}158um emission line to investigate the presence and the properties of massive, cold outflows associated with broad wings in the [CII] profile. The high sensitivity reached through this analysis allows us to reveal very broad [CII] wings tracing the presence of outflows with velocities in excess of 1000km/s. We find that the luminosity of the broad [CII] emission increases with LAGN, while it does not significantly depend on the star formation rate of the host galaxy, indicating that the central active galactic nucleus (AGN) is the main driving mechanism of the [CII] outflows in these powerful, distant QSOs. From the stack of the ALMA cubes, we derive an average outflow spatial extent of ~3.5kpc. The average atomic neutral mass outflow rate inferred from the stack of the whole sample is dM_out_/dt~100M_{sun}_/yr, while for the most luminous systems it increases to ~200M_{sun}_/yr. The associated outflow kinetic power is about 0.1% of L_AGN_, while the outflow momentum rate is ~L_AGN_/c or lower, suggesting that these outflows are either driven by radiation pressure onto dusty clouds or, alternatively, are driven by the nuclear wind and energy conserving but with low coupling with the interstellar medium. We discuss the implications of the resulting feedback effect on galaxy evolution in the early Universe.
- ID:
- ivo://CDS.VizieR/J/ApJ/813/45
- Title:
- ALMA observations in z~0.5-3 quasars
- Short Name:
- J/ApJ/813/45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 {mu}m (345 GHz) data for 49 high-redshift (0.47<z<2.85), luminous (11.7<log(L_bol_/L_{sun}_)<14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 {mu}m, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7<log(P_3.0GHz_/W/Hz)<27.3 and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7<log(M_BH_/M_{sun}_)<10.2. The rest-frame 1-5 {mu}m spectral energy distributions are very similar to the "Hot DOGs" (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9<log(M_ISM_/M_{sun}_)<11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M_{sun}_/yr, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.
- ID:
- ivo://CDS.VizieR/J/A+A/641/L2
- Title:
- ALMA third image of lensed quasar PKS 1830-211
- Short Name:
- J/A+A/641/L2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Strong gravitational lensing distorts our view of sources at cosmological distances but brings invaluable constraints on the mass content of foreground objects and on the geometry and properties of the Universe. We report the detection of a third continuum source toward the strongly lensed quasar PKS 1830-211 in ALMA multi-frequency observations of high dynamic range and high angular resolution. This third source is point-like and located slightly to the north of the diagonal joining the two main lensed images, A and B, 0.3" away from image B. It has a flux density that is 140 times weaker than images A and B and a similar spectral index, compatible with synchrotron emission. We conclude that this source is most likely the expected highly de-magnified third lensed image of the quasar. In addition, we detect, for the first time at millimeter wavelengths, weak and asymmetrical extensions departing from images A and B that correspond to the brightest regions of the Einstein ring seen at centimeter wavelengths. Their spectral index is steeper than that of compact images A, B, and C, which suggests that they arise from a different component of the quasar. Using the GravLens code, we explore the implications of our findings on the lensing model and propose a simple model that accurately reproduces our ALMA data and previous VLA observations. With a more precise and accurate measurement of the time delay between images A and B, the system PKS 1830-211 could help to constrain the Hubble constant to a precision of a few percent.
- ID:
- ivo://CDS.VizieR/J/A+A/580/A113
- Title:
- A low-luminosity type-1 QSO sample. III.
- Short Name:
- J/A+A/580/A113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the optical spectroscopic analysis of a sample of 99 low-luminosity quasi-stellar objects (LLQSOs) at z<=0.06 base the Hamburg/ESO QSO Survey (HES). To better relate the low-redshift active galactic nucleus (AGN) to the QSO population it is important to study samples of the latter type at a level of detail similar to that of the low-redshift AGN. Powerful QSOs, however, are absent at low redshifts due to evolutionary effects and their small space density. Our understanding of the (distant) QSO population is, therefore, significantly limited by angular resolution and sensitivity. The LLQSOs presented here offer the possibility of studying the faint end of this population at smaller cosmological distances and, therefore, in greater detail. In comparing two spectroscopic methods, we aim to establish a reliable activity classification scheme of the LLQSOs sample. Our goal is to enrich our systematic multiwavelength analysis of the AGN/starburst relation in these systems and give a complementary information on this particular sample of LLQSOs from the Hamburg ESO survey. Here, we present results of the analysis of visible wavelength spectroscopy provided by the HES and the 6 Degree Field Galaxy Survey (6dFGS). These surveys use different spectroscopic techniques, long-slit and circular fiber, respectively. These allow us to assess the influence of different apertures on the activity of the LLQSOs using classical optical diagnostic diagrams. We perform a Gaussian fitting of strong optical emission lines and decompose narrow and broad Balmer components. A small number of our LLQSO present no broad component, which is likely to be present but buried in the noise. Two sources show double broad components, whereas six comply with the classic NLS1 requirements. As expected in NLR of broad line AGNs, the [SII]-based electron density values range between 100 and 1000N_e_/cm^3^. Using the optical characteristics of Populations A and B, we find that 50% of our sources with H{beta} broad emission are consistent with the radio-quiet sources definition. The remaining sources could be interpreted as low-luminosity radio-loud quasar. The BPT-based classification renders an AGN/Seyfert activity between 50 to 60%. For the remaining sources, the possible starburst contribution might control the LINER and HII classification. Finally, we discuss the aperture effect as responsible for the differences found between data sets, although variability in the BLR could play a significant role as well.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/9
- Title:
- AMIGA: The Circumgalactic Medium of Andromeda
- Short Name:
- J/ApJ/900/9
- Date:
- 14 Mar 2022 07:38:05
- Publisher:
- CDS
- Description:
- Project AMIGA (Absorption Maps In the Gas of Andromeda) is a survey of the circumgalactic medium (CGM) of Andromeda (M31, R_vir_~300kpc) along 43 QSO sightlines at impact parameters 25<~R<~569kpc (25 at R<~R_vir_). We use ultraviolet absorption measurements of SiII, SiIII, SiIV, CII, and CIV from the Hubble Space Telescope/Cosmic Origins Spectrograph and OVI from the Far Ultraviolet Spectroscopic Explorer to provide an unparalleled look at how the physical conditions and metals are distributed in the CGM of M31. We find that SiIII and OVI have a covering factor near unity for R<~1.2R_vir_ and <~1.9R_vir_, respectively, demonstrating that M31 has a very extended ~104-105.5K ionized CGM. The metal and baryon masses of the 104-105.5K CGM gas within R_vir_ are >~108 and >~4x1010 (Z/0.3Z{sun})-1M{sun}, respectively. There is not much azimuthal variation in the column densities or kinematics, but there is with R. The CGM gas at R<~0.5R_vir_ is more dynamic and has more complicated, multiphase structures than at larger radii, perhaps a result of more direct impact of galactic feedback in the inner regions of the CGM. Several absorbers are projected spatially and kinematically close to M31 dwarf satellites, but we show that those are unlikely to give rise to the observed absorption. Cosmological zoom simulations of ~L* galaxies have OVI extending well beyond R_vir_ as observed for M31 but do not reproduce well the radial column density profiles of the lower ions. However, some similar trends are also observed, such as the lower ions showing a larger dispersion in column density and stronger dependence on R than higher ions. Based on our findings, it is likely that the Milky Way has a ~104-105.5K CGM as extended as for M31 and their CGM (especially the warm-hot gas probed by OVI) are overlapping.