- ID:
- ivo://CDS.VizieR/J/A+AS/122/271
- Title:
- mm-monitoring of radio sources IV.
- Short Name:
- J/A+AS/122/271
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Radio flux densities are presented for 118 extragalactic radio sources monitored at 90, 142 and 230GHz with the IRAM 30m telescope during 1993-1994. For the most frequently observed sources we show light curves including 30 m-measurements published in previous papers, Steppe et al. (1988A&AS...75..317S; 1992A&AS...96..441S and and 1993, Cat. <J/A+AS/102/611>)
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/545/A113
- Title:
- MOJAVE IX. Core shift effects
- Short Name:
- J/A+A/545/A113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have investigated a frequency-dependent shift in the absolute position of the optically thick apparent origin of parsec-scale jets ("core shift" effect) to probe physical conditions in ultra-compact relativistic outflows in active galactic nuclei. We used multi-frequency Very Long Baseline Array (VLBA) observations of 191 sources carried out in 12 epochs in 2006 within the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) program. The observations were performed at 8.1, 8.4, 12.1, and 15.4GHz. We implemented a method of determining the core shift vector based on (i) image registration by two-dimensional normalized cross-correlation and (ii) model-fitting the source brightness distribution to take into account a non-zero core component offset from the phase center.
- ID:
- ivo://CDS.VizieR/J/ApJ/706/1253
- Title:
- MOJAVE VII. Blazar jet acceleration
- Short Name:
- J/ApJ/706/1253
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We discuss acceleration measurements for a large sample of extragalactic radio jets from the Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments (MOJAVE) program, which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of active galactic nuclei (AGNs). Accelerations are measured from the apparent motion of individual jet features or "components" which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities.
- ID:
- ivo://CDS.VizieR/J/AJ/144/105
- Title:
- MOJAVE. VIII. Faraday rotation in AGN jets.
- Short Name:
- J/AJ/144/105
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal Faraday rotation is needed.
- ID:
- ivo://CDS.VizieR/J/AJ/138/1874
- Title:
- MOJAVE. VI. Kinematic analysis of blazar jets
- Short Name:
- J/AJ/138/1874
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGNs) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets.
- ID:
- ivo://CDS.VizieR/J/ApJ/798/134
- Title:
- MOJAVE. XII. Acceleration of blazar jets
- Short Name:
- J/ApJ/798/134
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the acceleration properties of 329 features in 95 blazar jets from the MOJAVE Very Long Baseline Array program. Nearly half the features and three-quarters of the jets show significant changes in speed and/or direction. In general, apparent speed changes are distinctly larger than changes in direction, indicating that changes in the Lorentz factors of jet features dominate the observed speed changes rather than bends along the line of sight. Observed accelerations tend to increase the speed of features near the jet base, <~10-20pc projected, and decrease their speed at longer distances. The range of apparent speeds at a fixed distance in an individual jet can span a factor of a few, indicating that shock properties and geometry may influence the apparent motions; however, we suggest that the broad trend of jet features increasing their speed near the origin is due to an overall acceleration of the jet flow out to deprojected distances of the order of 10^2^pc, beyond which the flow begins to decelerate or remains nearly constant in speed. We estimate intrinsic rates of change of the Lorentz factors in the galaxy frame of the order of {sdot}{Gamma}/{Gamma}~=10^-3^ to 10^-2^/yr, which can lead to total Lorentz factor changes of a factor of a few on the length scales observed here. Finally, we also find evidence for jet collimation at projected distances of <~10pc in the form of the non-radial motion and bending accelerations that tend to better align features with the inner jet.
- ID:
- ivo://CDS.VizieR/J/AJ/152/12
- Title:
- MOJAVE. XIII. New 15GHz observations on 1994-2013
- Short Name:
- J/AJ/152/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 1625 new 15GHz (2cm) VLBA images of 295 jets associated with active galactic nuclei (AGNs) from the MOJAVE and 2cm VLBA surveys, spanning observations between 1994 August 31 and 2013 August 20. For 274 AGNs with at least 5 VLBA epochs, we have analyzed the kinematics of 961 individual bright features in their parsec-scale jets. A total of 122 of these jets have not been previously analyzed by the MOJAVE program. In the case of 451 jet features that had at least 10 epochs, we also examined their kinematics for possible accelerations. At least half of the well-sampled features have non-radial and/or accelerating trajectories, indicating that non-ballistic motion is common in AGN jets. Since it is impossible to extrapolate any accelerations that occurred before our monitoring period, we could only determine reliable ejection dates for ~24% of those features that had significant proper motions. The distribution of maximum apparent jet speeds in all 295 AGNs measured by our program to date is peaked below 5c , with very few jets with apparent speeds above 30c . The fastest speed in our survey is ~50c , measured in the jet of the quasar PKS0805-07, and is indicative of a maximum jet Lorentz factor of ~50 in the parent population. An envelope in the maximum jet speed versus redshift distribution of our sample provides additional evidence of this upper limit to the speeds of radio-emitting regions in parsec-scale AGN jets. The Fermi-LAT-detected gamma-ray AGNs in our sample have, on average, higher jet speeds than non-LAT-detected AGNs, indicating a strong correlation between parsec-scale jet speed and the gamma-ray Doppler boosting factor. We have identified 11 moderate-redshift (z<0.35) AGNs with fast apparent speeds (>10c) that are strong candidates for future TeV gamma-ray detection. Of the five gamma-ray loud narrow-lined Seyfert I AGNs in our sample, three show highly superluminal jet motions, while the others have sub-luminal speeds. This indicates that some narrow-lined Seyfert I AGNs possess powerful jets with Lorentz factors in excess of 10, and viewing angles less than 10{deg}, consistent with those of typical BL Lac objects and flat-spectrum radio quasars.
- ID:
- ivo://CDS.VizieR/J/AJ/147/143
- Title:
- MOJAVE. XI. Spectral distributions
- Short Name:
- J/AJ/147/143
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained milliarcsecond-scale spectral index distributions for a sample of 190 extragalactic radio jets through the Monitoring of Jets in Active Galactic Nuclei with the VLBA Experiments (MOJAVE) project. The sources were observed in 2006 at 8.1, 8.4, 12.1, and 15.4GHz, and we have determined spectral index maps between 8.1 and 15.4GHz to study the four-frequency spectrum in individual jet features. We have performed detailed simulations to study the effects of image alignment and (u, v)-plane coverage on the spectral index maps to verify our results. We use the spectral index maps to study the spectral index evolution along the jet and determine the spectral distributions in different locations of the jets. The core spectral indices are on average flat with a mean value of +0.22+/-0.03 for the sample, while the jet spectrum is in general steep with a mean index of -1.04+/-0.03. A simple power-law fit is often inadequate for the core regions, as expected if the cores are partially self-absorbed. The overall jet spectrum steepens at a rate of about -0.001 to -0.004 per deprojected parsec when moving further out from the core with flat spectrum radio quasars having significantly steeper spectra (mean -1.09+/-0.04) than the BL Lac objects (mean -0.80+/-0.05). However, the spectrum in both types of objects flattens on average by ~0.2 at the locations of the jet components indicating particle acceleration or density enhancements along the jet. The mean spectral index at the component locations of -0.81+/-0.02 corresponds to a power-law index of ~2.6 for the electron energy distribution. We find a significant trend that jet components with linear polarization parallel to the jet (magnetic field perpendicular to the jet) have flatter spectra, as expected for transverse shocks. Compared to quasars, BL Lacs have more jet components with perpendicular magnetic field alignment, which may explain their generally flatter spectra. The overall steepening of the spectra with distance can be explained with radiative losses if the jets are collimating or with the evolution of the high-energy cutoff in the electron spectrum if the jets are conical. This interpretation is supported by a significant correlation with the age of the component and the spectral index, with older components having steeper spectra.
- ID:
- ivo://CDS.VizieR/J/AJ/146/120
- Title:
- MOJAVE. X. Parsec-scale kinematics of AGNs
- Short Name:
- J/AJ/146/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe the parsec-scale kinematics of 200 active galactic nucleus (AGN) jets based on 15GHz Very Long Baseline Array (VLBA) data obtained between 1994 August 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGNs from the MOJAVE and 2cm Survey programs. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12-16yr interval, ranging from 10{deg} to 150{deg} on the sky, corresponding to intrinsic variations of ~0.5{deg} to ~2{deg}. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5-12yr), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1mas/yr), are more prevalent in BL Lac jets, and are typically found within 1mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the dispersion, implying that the features have a range of Lorentz factor and/or pattern speed. Very slow pattern speed features are rare, comprising only 4% of the sample, and are more prevalent in radio galaxy and BL Lac jets. We confirm a previously reported upper envelope to the distribution of speed versus beamed luminosity for moving jet features. Below 10^26^W/Hz there is a fall-off in maximum speed with decreasing 15GHz radio luminosity. The general shape of the envelope implies that the most intrinsically powerful AGN jets have a wide range of Lorentz factors up to ~40, while intrinsically weak jets are only mildly relativistic.
- ID:
- ivo://CDS.VizieR/J/ApJ/874/43
- Title:
- MOJAVE. XVII. Parsec-scale jet kinematics of AGNs
- Short Name:
- J/ApJ/874/43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from a parsec-scale jet kinematics study of 409 bright radio-loud active galactic nuclei (AGNs) based on 15GHz Very Long Baseline Array (VLBA) data obtained between 1994 August 31 and 2016 December 26 as part of the 2cm VLBA survey and Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) programs. We tracked 1744 individual bright features in 382 jets over at least 5 epochs. A majority (59%) of the best-sampled jet features showed evidence of accelerated motion at the >3{sigma} level. Although most features within a jet typically have speeds within ~40% of a characteristic median value, we identified 55 features in 42 jets that had unusually slow pattern speeds, nearly all of which lie within 4pc (100pc deprojected) of the core feature. Our results, combined with other speeds from the literature, indicate a strong correlation between apparent jet speed and synchrotron peak frequency, with the highest jet speeds being found only in low-peaked AGNs. Using Monte Carlo simulations, we find best-fit parent population parameters for a complete sample of 174 quasars above 1.5Jy at 15GHz. Acceptable fits are found with a jet population that has a simple unbeamed power-law luminosity function incorporating pure luminosity evolution and a power-law Lorentz factor distribution ranging from 1.25 to 50 with slope -1.4+/-0.2. The parent jets of the brightest radio quasars have a space density of 261+/-19Gpc^-3^ and unbeamed 15GHz luminosities above ~10^24.5^W/Hz, consistent with FRII class radio galaxies.