- ID:
- ivo://CDS.VizieR/J/A+A/464/927
- Title:
- Abundances of red giants in NGC 6752
- Short Name:
- J/A+A/464/927
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We are studying the Na-O anticorrelation in several globular clusters of different Horizontal Branch (HB) morphology in order to derive a possible relation between (primordial) chemical inhomogeneities and morphological parameters of the cluster population. We used the multifiber spectrograph FLAMES on the ESO Very Large Telescope UT2 and derived atmospheric parameters and elemental abundances of Fe, O and Na for about 150 red giant stars in the Galactic globular cluster NGC 6752. The average metallicity we derive is [Fe/H]=-1.56, in agreement with other results from red giants, but lower than obtained for dwarfs or early subgiants. In NGC 6752 there is not much space for an intrinsic spread in metallicity: on average, the rms scatter in [Fe/H] is 0.037+/-0.003dex, while the scatter expected on the basis of the major error sources is 0.039+/-0.003dex. The distribution of stars along the Na-O anticorrelation is different to what was found in the first paper of this series for the globular cluster NGC 2808: in NGC 6752 it is skewed toward more Na-poor stars, and it resembles more the one in M 13. Detailed modeling is required to clarify whether this difference may explain the very different distributions of stars along the HB.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/681/1505
- Title:
- Abundances of red giants in {omega} Cen
- Short Name:
- J/ApJ/681/1505
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present radial velocities and Fe and Al abundances for 180 red giant branch (RGB) stars in the Galactic globular cluster Omega Centauri ({omega} Cen). The majority of our data lie in the range 11.0<V<13.5, which covers the RGB from about 1mag above the horizontal branch to the RGB tip. The selection procedures are biased toward preferentially observing the more metal-poor and luminous stars of {omega} Cen. Abundances were determined using equivalent width measurements and spectrum synthesis analyses of moderate resolution spectra (R~13000) obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. Our results are in agreement with previous studies as we find at least four different metallicity populations with [Fe/H]=-1.75, -1.45, -1.05, and -0.75, with a full range of -2.20<~[Fe/H]<~-0.70. Results seem to fit in the adopted scheme that star formation occurred in {omega} Cen over >1Gyr.
- ID:
- ivo://CDS.VizieR/J/ApJ/740/106
- Title:
- Abundances of 4 red giants in Pal 1
- Short Name:
- J/ApJ/740/106
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (R_GC_=17.2kpc, Z=3.6kpc) using high-resolution (R=36000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H]=-0.60+/-0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [{alpha}/Fe] ratios, though in agreement with the Galactic stars within the 1{sigma} errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/{alpha}] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.
- ID:
- ivo://CDS.VizieR/J/ApJ/765/157
- Title:
- Abundances of red giants in the Galactic bulge
- Short Name:
- J/ApJ/765/157
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch stars in three Galactic bulge off-axis fields located near (l,b)=(-5.5,-7), (-4,-9), and (+8.5,+9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R{approx}18000), high signal-to-noise ratio (S/N~75-300pixel^-1^) spectra obtained with the Hydra spectrographs on the Blanco 4m and WIYN 3.5m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affected by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests that our selection of bluer targets should not present a significant bias against metal-rich stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/767/134
- Title:
- Abundances of red giant stars in UFD galaxies
- Short Name:
- J/ApJ/767/134
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Milky Way ultra-faint dwarf (UFD) galaxies contain some of the oldest, most metal-poor stars in the universe. We present [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], and mean [{alpha}/Fe] abundance ratios for 61 individual red giant branch stars across eight UFDs. This is the largest sample of alpha abundances published to date in galaxies with absolute magnitudes M_V_>-8, including the first measurements for Segue 1, Canes Venatici II, Ursa Major I, and Leo T. Abundances were determined via medium-resolution Keck/DEIMOS spectroscopy and spectral synthesis. The sample spans the metallicity range -3.4<[Fe/H]<-1.1. With the possible exception of Segue 1 and Ursa Major II, the individual UFDs show on average lower [{alpha}/Fe] at higher metallicities, consistent with enrichment from Type Ia supernovae. Thus, even the faintest galaxies have undergone at least a limited level of chemical self-enrichment. Together with recent photometric studies, this suggests that star formation in the UFDs was not a single burst, but instead lasted at least as much as the minimum time delay of the onset of Type Ia supernovae (~100Myr) and less than ~2Gyr. We further show that the combined population of UFDs has an [{alpha}/Fe] abundance pattern that is inconsistent with a flat, Galactic halo-like alpha abundance trend, and is also qualitatively different from that of the more luminous CVn I dSph, which does show a hint of a plateau at very low [Fe/H].
- ID:
- ivo://CDS.VizieR/J/ApJ/782/59
- Title:
- Abundances of 8 RR Lyrae subclass C variable stars
- Short Name:
- J/ApJ/782/59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed chemical abundance study of eight RR Lyrae variable stars of subclass c (RRc). The target RRc stars chosen for study exhibit "Blazhko-effect" period and amplitude modulations to their pulsational cycles. Data for this study were gathered with the echelle spectrograph of the 100 inch du Pont telescope at Las Campanas Observatory. Spectra were obtained throughout each star's pulsation cycle. Atmospheric parameters--effective temperature, surface gravity, microturbulent velocity, and metallicity--were derived at multiple phase points. We found metallicities and element abundance ratios to be constant within observational uncertainties over the pulsational cycles of all stars. Moreover, the {alpha}-element and Fe-group abundance ratios with respect to iron are consistent with other horizontal-branch members (RRab, blue and red non-variables). Finally, we have used the [Fe/H] values of these eight RRc stars to anchor the metallicity estimates of a large-sample RRc snapshot spectroscopic study being conducted with the same telescope and instrument combination employed here.
- ID:
- ivo://CDS.VizieR/J/ApJ/742/37
- Title:
- Abundances of six RGB stars in M22
- Short Name:
- J/ApJ/742/37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an empirical s-process abundance distribution derived with explicit knowledge of the r-process component in the low-metallicity globular cluster M22. We have obtained high-resolution, high signal-to-noise spectra for six red giants in M22 using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory. In each star we derive abundances for 44 species of 40 elements, including 24 elements heavier than zinc (Z=30) produced by neutron-capture reactions. Previous studies determined that three of these stars (the "r+s group") have an enhancement of s-process material relative to the other three stars (the "r-only group"). We confirm that the r+s group is moderately enriched in Pb relative to the r-only group. Both groups of stars were born with the same amount of r-process material, but s-process material was also present in the gas from which the r+s group formed. The s-process abundances are inconsistent with predictions for asymptotic giant branch (AGB) stars with M<=3M_{sun}_ and suggest an origin in more massive AGB stars capable of activating the ^22^Ne({alpha},n)^25^Mg reaction. We calculate the s-process "residual" by subtracting the r-process pattern in the r-only group from the abundances in the r+s group. In contrast to previous r- and s-process decompositions, this approach makes no assumptions about the r- and s-process distributions in the solar system and provides a unique opportunity to explore s-process yields in a metal-poor environment.
- ID:
- ivo://CDS.VizieR/J/ApJ/889/27
- Title:
- Abundances of 11 stars in Carina II and III
- Short Name:
- J/ApJ/889/27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first detailed elemental abundances in the ultra-faint Magellanic satellite galaxies Carina II (Car II) and Carina III (CarIII). With high-resolution Magellan/MIKE spectroscopy, we determined the abundances of nine stars in Car II, including the first abundances of an RR Lyrae star in an ultra-faint dwarf galaxy (UFD), and two stars in Car III. The chemical abundances demonstrate that both systems are clearly galaxies and not globular clusters. The stars in these galaxies mostly display abundance trends matching those of other similarly faint dwarf galaxies: enhanced but declining [{alpha}/Fe] ratios, iron-peak elements matching the stellar halo, and unusually low neutron-capture element abundances. One star displays a low outlying [Sc/Fe]=-1.0. We detect a large Ba scatter in Car II, likely due to inhomogeneous enrichment by low-mass asymptotic giant branch star winds. The most striking abundance trend is for [Mg/Ca] in Car II, which decreases from +0.4 to -0.4 and indicates clear variation in the initial progenitor masses of enriching core-collapse supernovae. So far, the only UFDs displaying a similar [Mg/Ca] trend are likely satellites of the Large Magellanic Cloud. We find two stars with [Fe/H]<=-3.5 whose abundances likely trace the first generation of metal-free Population III stars and are well fit by Population III core-collapse supernova yields. An appendix describes our new abundance uncertainty analysis that propagates line-by-line stellar parameter uncertainties.
- ID:
- ivo://CDS.VizieR/J/ApJ/854/184
- Title:
- Abundances of stars in 3 open clusters
- Short Name:
- J/ApJ/854/184
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC2360, NGC3680, and NGC5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code moog. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC2360, NGC3680, and NGC5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants.
- ID:
- ivo://CDS.VizieR/J/ApJ/830/93
- Title:
- Abundances of the Ret II brightest red giant members
- Short Name:
- J/ApJ/830/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5<[Fe/H]< -2). Seven of the nine stars have extremely high levels of r-process material ([Eu/Fe]~1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H]< -3), and they have neutron-capture element abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r-process halo stars, but they are ~0.5dex lower than the solar r-process pattern. If the universal r-process pattern extends to those elements, the stars in Ret II display the least contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo.