We present the second data release (DR2) of the XXL Survey, contextually with the appearance of a second A&A special issue dedicated to XXL. This intermediate release includes the following catalogues and data: The X-ray point source catalogue (3XLSS) and the associated multiwavelength catalogues in the XXL-N and XXL-s areas (XXL paper XXVII). The same paper also provides the list of XMM pointings used, and a supplementary catalogue of redshifts obtained with the AAOmega spectrograph in the XXL-S area. The XXL-365-GC galaxy cluster catalogue (XXL paper XX) with the complete subset of clusters for which the selection function is well determined plus all X-ray clusters which are, to date, spectroscopically confirmed. The ATCA 2.1 GHz radio source catalogue in the XXL-S area (XXL paper XXVIII), together with the catalogue of ther optical and near infrared counterparts (XXL paper XXVI). The GMRT 610 MHz radio source catalogue in the XXL-N area (XXL paper XXIX). FITS images of the XXL-North field: continuum radio mosaic from observations with the Giant Meterwave Radio Telescope (GMRT) at 610MHz, and the corresponding noise map. A complete spectrophotometric sample of galaxies within X-ray detected, optically spectroscopically confirmed groups and clusters (G&C), including also field objects, in the XXL-N area (XXL paper XXII). The list of brightest cluster galaxies (BCGs) in the XXL-N area (XXL paper XXVIII). FITS images of the two radio galaxies described in XXL paper XXXIV. ATCA XXL-S source classification data (XXL paper XXXVI) http://sci.esa.int/xmm-newton/60686-tracing-the-universe-x-ray-survey-\ supports-standard-cosmological-model/ List of XXL DR2 papers: XVI. The clustering of X-ray selected galaxy clusters at z~0.3 XVII. X-ray and Sunyaev-Zel'dovich properties of the redshift 2.0 galaxy cluster XLSSC 122 XVIII. ATCA 2.1 GHz radio source catalogue and source counts for the XXL-South field XIX. A realistic population of simulated X-ray AGN: Comparison of models with observations XX. The 365 cluster catalogue XXI. The environment and clustering of X-ray AGN in the XXL-South field XXII. The XXL-North spectrophotometric sample and galaxy stellar mass function in X-ray detected groups and clusters XXIII. The mass scale of XXL clusters from ensemble spectroscopy XXIV. The final detection pipeline XXV. Cosmological analysis of the C1 cluster number counts XXVI. Optical and near infrared identification of the ATCA 2.1 GHz radio sources in the XXL-S field XXVII. The 3XLSS point source catalogue XXVIII. Galaxy luminosity functions of the XXL-N clusters XXIX. GMRT 610 MHz continuum observations XXX. Characterisation of the XLSSsC N01 supercluster and analysis of the galaxy stellar populations XXXI. Classification and host galaxy properties of 2.1 GHz ATCA XXL-S radio sources XXXII. Spatial clustering of the XXL-S AGN XXXIII. Chandra constraints on the AGN contamination of z > 1 XXL galaxy clusters XXXIV. Double irony in XXL-North. A tale of two radio galaxies in a supercluster at z = 0.14 XXXV. The role of cluster mass in AGN activity XXXVI. Evolution and black hole feedback of high-excitation and low-excitation radio galaxies in XXL-S
The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have sup- ported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised. We present the XXL Survey, the largest XMM programme totaling some 6.9Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25deg^2^ each at a point-source sensitivity of ~5x10^-15^erg/s/cm^2^ in the [0.5-2]keV band (completeness limit). The survey's main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes. List of XXL papers: I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme. II. The bright cluster sample: catalogue and luminosity function. III. Luminosity-temperature relation of the bright cluster sample. IV. Mass-temperature relation of the bright cluster sample. VI. The 1000 brightest X-ray point sources. VII. A supercluster of galaxies at z = 0.43. VIII. MUSE characterisation of intracluster light in a z~0.53 cluster of galaxies. IX. Optical overdensity and radio continuum analysis of a supercluster at z=0.43. X. K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies. XI. ATCA 2.1 GHz continuum observations. XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters. XIII. Baryon content of the bright cluster sample. XIV. AAOmega redshifts for the southern XXL field.
We investigate early black hole (BH) growth through the methodical search for z>~5 active galactic nuclei (AGN) in the Chandra} Deep Field South. We base our search on the Chandra 4-Ms data with flux limits of 9.1x10^-18^erg/s/cm2 (soft, 0.5-2keV) and 5.5x10^-17^erg/s/cm2 (hard, 2-8keV). At z~5, this corresponds to luminosities as low as ~10^42^erg/s/cm2 (~10^43^erg/s) in the soft (hard) band and should allow us to detect Compton-thin AGN with M_BH_>10^7^M_{sun}_ and Eddington ratios >0.1. Our field (0.03deg^2^) contains over 600 z~5 Lyman Break Galaxies. Based on lower redshift relations, we would expect ~20 of them to host AGN. After combining the Chandra data with Great Observatories Origins Deep Survey (GOODS)/Advanced Camera for Surveys (ACS), CANDELS/Wide Field Camera 3 and Spitzer/Infrared Array Camera data, the sample consists of 58 high-redshift candidates. We run a photometric redshift code, stack the GOODS/ACS data, apply colour criteria and the Lyman Break Technique and use the X-ray Hardness Ratio. We combine our tests and using additional data find that all sources are most likely at low redshift. We also find five X-ray sources without a counterpart in the optical or infrared which might be spurious detections. We conclude that our field does not contain any convincing z>~5 AGN. Explanations for this result include a low BH occupation fraction, a low AGN fraction, short, super-Eddington growth modes, BH growth through BH-BH mergers or in optically faint galaxies. By searching for z>~5 AGN, we are setting the foundation for constraining early BH growth and seed formation scenarios.
We report a definitive confirmation of a large-scale structure around the super rich cluster CL0016+1609 at z=0.55. We made spectroscopic follow-up observations with Faint Object Camera and Spectrograph (FOCAS) on Subaru along the large filamentary structure identified in our previous photometric studies, including some subclumps already found by other authors.
We investigate active galactic nuclei (AGN) candidates within the FourStar Galaxy Evolution Survey (ZFOURGE) to determine the impact they have on star formation in their host galaxies. We first identify a population of radio, X-ray, and infrared-selected AGN by cross-matching the deep Ks-band imaging of ZFOURGE with overlapping multiwavelength data. From this, we construct a mass-complete (log(M*/M_{sun}_)>=9.75), AGN luminosity limited sample of 235 AGN hosts over z=0.2-3.2. We compare the rest-frame U-V versus V-J (UVJ) colours and specific star formation rates (sSFRs) of the AGN hosts to a mass-matched control sample of inactive (non-AGN) galaxies. UVJ diagnostics reveal AGN tend to be hosted in a lower fraction of quiescent galaxies and a higher fraction of dusty galaxies than the control sample. Using 160{mu}m Herschel PACS data, we find the mean specific star formation rate of AGN hosts to be elevated by 0.34-/-0.07dex with respect to the control sample across all redshifts. This offset is primarily driven by infrared-selected AGN, where the mean sSFR is found to be elevated by as much as a factor of ~5. The remaining population, comprised predominantly of X-ray AGN hosts, is found mostly consistent with inactive galaxies, exhibiting only a marginal elevation. We discuss scenarios that may explain these findings and postulate that AGN are less likely to be a dominant mechanism for moderating galaxy growth via quenching than has previously been suggested.
Galaxies at low-redshift typically possess negative gas-phase metallicity gradients (centres more metal-rich than their outskirts). Whereas, it is not uncommon to observe positive metallicity gradients in higher-redshift galaxies (z<0.6). Bridging these epochs, we present gas-phase metallicity gradients of 84 star-forming galaxies between 0.08<z<0.84. Using the galaxies with reliably determined metallicity gradients, we measure the median metallicity gradient to be negative (-0.039^+0.007^_-0.009_dex/kpc). Underlying this, however, is significant scatter: (8+/-3)% [7] of galaxies have significantly positive metallicity gradients, (38+/-5)% [32] have significantly negative gradients, (31+/-5)% [26] have gradients consistent with being flat. (The remaining (23+/-5)% [19] have unreliable gradient estimates.) We notice a slight trend for a more negative metallicity gradient with both increasing stellar mass and increasing star formation rate (SFR). However, given the potential redshift and size selection effects, we do not consider these trends to be significant. Indeed, once we normalize the SFR relative to that of the main sequence, we do not observe any trend between the metallicity gradient and the normalized SFR. This is contrary to recent studies of galaxies at similar and higher redshifts. We do, however, identify a novel trend between the metallicity gradient of a galaxy and its size. Small galaxies (rd<3kpc) present a large spread in observed metallicity gradients (both negative and positive gradients). In contrast, we find no large galaxies (rd > 3 kpc) with positive metallicity gradients, and overall there is less scatter in the metallicity gradient amongst the large galaxies. These large (well-evolved) galaxies may be analogues of present-day galaxies, which also show a common negative metallicity gradient.
We have carried out spectroscopic observations in four cluster fields using Subaru's FOCAS multislit spectrograph and obtained spectra for 103 bright disc field and cluster galaxies at 0.06<=z<=1.20. 77 of these show emission lines, and 33 provide reasonably secure determinations of the galaxies' rotation velocity. The rotation velocities, luminosities, colours and emission-line properties of these galaxies are used to study the possible effects of the cluster environment on the star formation history of the galaxies.