- ID:
- ivo://CDS.VizieR/J/A+A/541/A40
- Title:
- Metallicity of solar-type stars
- Short Name:
- J/A+A/541/A40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Around 16% of the solar-like stars in our neighbourhood show IR-excesses due to dusty debris discs and a fraction of them are known to host planets. Determining whether these stars follow any special trend in their properties is important to understand debris disc and planet formation. We aim to determine in a homogeneous way the metallicity of a sample of stars with known debris discs and planets. We attempt to identify trends related to debris discs and planets around solar-type stars Our analysis includes the calculation of the fundamental stellar parameters Teff, logg, microturbulent velocity, and metallicity by applying the iron ionisation equilibrium conditions to several isolated FeI and FeII lines. High-resolution echelle spectra (R~57000) from 2, 3m class telescopes are used. Our derived metallicities are compared with other results in the literature, which finally allows us to extend the stellar samples in a consistent way.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/567/A55
- Title:
- Metallicity of the {gamma} Vel cluster
- Short Name:
- J/A+A/567/A55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary systems. In spite of this, detailed abundance studies are currently available for relatively few regions. In this context, we present the analysis of the metallicity of the Gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. The Gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Out of the 80 targets observed with UVES, we identify 14 high-probability members. We find that the metallicity of the cluster is slightly sub-solar, with a mean [Fe/H]=-0.057+/-0.018dex. Although J08095427-4721419 is one of the high-probability members, its metallicity is significantly larger than the cluster average. We speculate about its origin as the result of recent accretion episodes of rocky bodies of about 60 Msun hydrogen-depleted material from the circumstellar disc.
- ID:
- ivo://CDS.VizieR/J/ApJ/758/133
- Title:
- Metallicity profile of M31 HII regions and PNe
- Short Name:
- J/ApJ/758/133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The oxygen abundance gradients among nebular emission line regions in spiral galaxies have been used as important constraints for models of chemical evolution. We present the largest-ever full-wavelength optical spectroscopic sample of emission line nebulae in a spiral galaxy (M31). We have collected spectra of 253 HII regions and 407 planetary nebulae (PNe) with the Hectospec multi-fiber spectrograph of the MMT. We measure the line-of-sight extinction for 199 HII regions and 333 PNe; we derive oxygen abundance directly, based on the electron temperature, for 51 PNe; and we use strong-line methods to estimate oxygen abundance for 192 HII regions and nitrogen abundance for 52 HII regions. The relatively shallow oxygen abundance gradient of the more extended HII regions in our sample is generally in agreement with the result of Zaritsky et al. (1994ApJ...420...87Z), based on only 19 M31 HII regions, but varies with the strong-line diagnostic employed. Our large sample size demonstrates that there is significant intrinsic scatter around this abundance gradient, as much as ~3 times the systematic uncertainty in the strong-line diagnostics. The intrinsic scatter is similar in the nitrogen abundances, although the gradient is significantly steeper. On small scales (deprojected distance <0.5kpc), HII regions exhibit local variations in oxygen abundance that are larger than 0.3dex in 33% of neighboring pairs. We do not identify a significant oxygen abundance gradient among PNe, but we do find a significant gradient in the [NII] ratio that varies systematically with surface brightness. Our results underscore the complex and inhomogeneous nature of the interstellar medium of M31, and our data set illustrates systematic effects relevant to future studies of the metallicity gradients in nearby spiral galaxies.
- ID:
- ivo://CDS.VizieR/J/A+A/526/A99
- Title:
- Metal-poor solar-type stars spectroscopy and masses
- Short Name:
- J/A+A/526/A99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stellar metallicity strongly correlates with the presence of planets and their properties. To check for new correlations between stars and the existence of an orbiting planet, we determine precise stellar parameters for a sample of metal-poor solar-type stars. This sample was observed with the HARPS spectrograph and is part of a program to search for new extrasolar planets.
- ID:
- ivo://CDS.VizieR/J/ApJ/794/58
- Title:
- Metal-poor stars in the thick disk of the Galaxy
- Short Name:
- J/ApJ/794/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A new set of very high signal-to-noise (S/N>100/1), medium-resolution (R~3000) optical spectra have been obtained for 302 of the candidate "weak-metal" stars selected by Bidelman & MacConnell (1973AJ.....78..687B, Cat. III/46). We use these data to calibrate the recently developed generalization of the Sloan Extension for Galactic Exploration and Understanding and Exploration (SEGUE) Stellar Parameter Pipeline, and obtain estimates of the atmospheric parameters (T_eff_, log g, and [Fe/H]) for these non-Sloan Digital Sky Survey/SEGUE data; we also obtain estimates of [C/Fe]. The new abundance measurements are shown to be consistent with available high-resolution spectroscopic determinations, and represent a substantial improvement over the accuracies obtained from the previous photometric estimates reported in Paper I of this series (Norris et al. 1985ApJS...58..463N). The apparent offset in the photometric abundances of the giants in this sample noted by several authors is confirmed by our new spectroscopy; no such effect is found for the dwarfs. The presence of a metal-weak thick-disk (MWTD) population is clearly supported by these new abundance data. Some 25% of the stars with metallicities -1.8<[Fe/H]<=-0.8 exhibit orbital eccentricities e<0.4, yet are clearly separated from members of the inner-halo population with similar metallicities by their location in a Lindblad energy versus angular momentum diagram. A comparison is made with recent results for a similar-size sample of Radial Velocity Experiment stars from Ruchti et al. (2010ApJ...721L..92R ; 2011ApJ...737....9R). We conclude, based on both of these samples, that the MWTD is real, and must be accounted for in discussions of the formation and evolution of the disk system of the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/875/89
- Title:
- Metal-poor stars with APF. I. LAMOST CEMP stars
- Short Name:
- J/ApJ/875/89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the discovery of five carbon-enhanced metal-poor (CEMP) stars in the metallicity range of -3.3<[Fe/H]{<}-2.4. These stars were selected from the LAMOST DR3 low-resolution (R~2000) spectroscopic database as metal-poor candidates and followed up with high-resolution spectroscopy (R~110000) with the Lick/APF. Stellar parameters and individual abundances for 25 chemical elements (from Li to Eu) are presented for the first time. These stars exhibit chemical abundance patterns that are similar to those reported in other literature studies of very and extremely metal-poor stars. One of our targets, J2114-0616, shows high enhancement in carbon ([C/Fe]=1.37), nitrogen ([N/Fe]=1.88), barium ([Ba/Fe]=1.00), and europium ([Eu/Fe]=0.84). Such chemical abundance pattern suggests that J2114-0616 can be classified as CEMP-r/s star. In addition, the star J1054+0528 can be classified as a CEMP-rI star, with [Eu/Fe]=0.44 and [Ba/Fe]=-0.52. The other stars in our sample show no enhancements in neutron-capture elements and can be classified as CEMP-no stars. We also performed a kinematic and dynamical analysis of the sample stars based on Gaia DR2 data. The kinematic parameters, orbits, and binding energy of these stars show that J2114-0616 is member of the outer-halo population, while the remaining stars belong to the inner-halo population but with an accreted origin. Collectively, these results add important constraints on the origin and evolution of CEMP stars as well as on their possible formation scenarios.
- ID:
- ivo://CDS.VizieR/J/PASP/118/1077
- Title:
- Metal-strong damped Ly{alpha} systems
- Short Name:
- J/PASP/118/1077
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have identified a metal-strong [logN(Zn+)>=13.15 or logN(Si^+^)>=15.95] damped Ly{alpha} (MSDLA) population from an automated quasar (QSO) absorber search in the Sloan Digital Sky Survey (SDSS) Data Release 3 quasar sample and find that MSDLAs comprise >>5% of the entire DLA population with z_abs_>=2.2 found in QSO sight lines with r<19.5. We have also acquired 27 Keck ESI (Echellete Spectrograph and Imager) follow-up spectra of metal strong candidates in order to evaluate our automated technique and examine the MSDLA candidates at higher resolution.
- ID:
- ivo://CDS.VizieR/J/ApJ/808/108
- Title:
- M2FS stellar spectroscopy of Reticulum 2
- Short Name:
- J/ApJ/808/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from spectroscopic observations with the Michigan/Magellan Fiber System (M2FS) of 182 stellar targets along the line of sight (LOS) to the newly discovered "ultrafaint" object Reticulum 2 (Ret 2). For 37 of these targets, the spectra are sufficient to provide simultaneous estimates of LOS velocity ({nu}i_los_, median random error {delta}_{nu}los_=1.4km/s), effective temperature (T_eff_, {delta}_Tef_=478K), surface gravity (logg, {delta}_logg_=0.63dex), and iron abundance ([Fe/H], {delta}_[Fe/H]_=0.47dex). We use these results to confirm 17 stars as members of Ret 2. From the member sample we estimate a velocity dispersion of {sigma}_{nu}los_=3.6_-0.7_^+1.0^km/s about a mean of <{nu}_los_>=64.3_1.2_^+1.2^km/s in the solar rest frame (~-90.9km/s in the Galactic rest frame), and a metallicity dispersion of {sigma}_[Fe/H]_=0.49_-0.14_^+0.19^dex about a mean of <[Fe/H]_>=-2.58_-0.33_^+0.34^. These estimates marginalize over possible velocity and metallicity gradients, which are consistent with zero. Our results place Ret 2 on chemodynamical scaling relations followed by the Milky Way's dwarf-galactic satellites. Under assumptions of dynamic equilibrium and negligible contamination from binary stars --both of which must be checked with deeper imaging and repeat spectroscopic observations-- the estimated velocity dispersion suggests a dynamical mass of M(R_h_)~5R_h_{sigma}_{nu}los_^2^/(2G)=2.4_-0.8_^+1.4^x10^5^M_{sun}_ enclosed within projected halflight radius R_h_~32pc, with mass-to-light ratio ~2M(R_h_)/L_V_=467_-168_^+286^ in solar units.
- ID:
- ivo://CDS.VizieR/J/A+A/633/A155
- Title:
- M8, G333.6-0.2 and NGC6357 young stars
- Short Name:
- J/A+A/633/A155
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The identification and characterisation of populations of young massive stars in (giant) HII regions provides important constraints on i) the formation process of massive stars and their early feedback on the environment, and ii) the initial conditions for population synthesis models predicting the evolution of ensembles of stars. We identify and characterise the stellar populations of the following young giant HII regions: M8, G333.6-0.2, and NGC6357. We have acquired H- and K-band spectra of around 200 stars using The K-band Multi Object Spectrograph (KMOS) on the ESO Very Large Telescope. The targets for M8 and NGC6357 were selected from the Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX), which combines X-ray observations with near-infrared and mid-infrared data. For G333.6-0.2, the sample selection is based on the near-infrared colours combined with X-ray data. We introduce an automatic spectral classification method in order to obtain temperatures and luminosities for the observed stars. We analysed the stellar populations using their photometric, astrometric, and spectroscopic properties and compared the position of the stars in the Hertzprung-Russell diagram with stellar evolution models to constrain their ages and mass ranges. We confirm the presence of candidate ionising sources in the three regions and report new ones, including the first spectroscopically identified O stars in G333.6-0.2. In M8 and NGC6357, two populations are identified: (i) OB main-sequence stars (M>5M_{sun}_) and (ii) pre-main sequence stars (M~=0.5-5M_{sun}_). The ages of the clusters are ~1-3Myr, <3Myr, and 0.5-3Myr for M8, G333.6-0.2, and NGC6357, respectively. We show that MYStIX selected targets have >90% probability of being members of the HII region, whereas a selection based on near infrared (NIR) colours leads to a membership probability of only 70%.
- ID:
- ivo://CDS.VizieR/J/MNRAS/396/1895
- Title:
- MgI and sTiO index definitions
- Short Name:
- J/MNRAS/396/1895
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the near-infrared spectral stellar library of Cenarro et al. (J/MNRAS/326/959), the behaviour of the MgI line at 8807{AA} and nearby TiO bands is analyzed in terms of the effective temperature, surface gravity and metallicity of the library stars. New spectroscopic indices for both spectral features - namely MgI and sTiO - are defined, and their sensitivities to different signal-to-noise ratios, spectral resolutions, flux calibrations and sky emission-line residuals are characterized. The two new indices exhibit interesting properties. In particular, MgI is a good indicator of the Mg abundance, whereas sTiO is a powerful dwarf-to-giant discriminator for cold spectral types. Empirical fitting polynomials that reproduce the strength of the new indices as a function of the stellar atmospheric parameters are computed, and a fortran routine with the fitting function predictions is made available. A thorough study of several error sources, non-solar [Mg/Fe] ratios and their influence on the fitting function residuals is also presented. From this analysis, an [Mg/Fe] underabundance of ~-0.04 is derived for the Galactic open cluster M67.