- ID:
- ivo://CDS.VizieR/J/AJ/133/2464
- Title:
- Parameters and abundances of nearby giants
- Short Name:
- J/AJ/133/2464
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present parameter and abundance data for a sample of 298 nearby giants. The spectroscopic data for this work have a resolution of R~60000S/N>150, and spectral coverage from 475 to 685nm. Overall trends in the Z>10 abundances are dominated by Galactic chemical evolution, while the light-element abundances are influenced by stellar evolution, as well as Galactic evolution. We find several super-Li stars in our sample and confirm that Li abundances in the first giant branch are related to mixing depths.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/159/254
- Title:
- Parameters for 453 metal-poor stars in NGC5139
- Short Name:
- J/AJ/159/254
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The most massive and complex globular clusters in the Galaxy are thought to have originated as the nuclear cores of now tidally disrupted dwarf galaxies, but the connection between globular clusters and dwarf galaxies is tenuous with the M54/Sagittarius system representing the only unambiguous link. The globular cluster Omega Centauri ({omega}Cen) is more massive and chemically diverse than M54, and is thought to have been the nuclear star cluster of either the Sequoia or Gaia-Enceladus galaxy. Local Group dwarf galaxies with masses equivalent to these systems often host significant populations of very metal-poor stars ([Fe/H]<-2.5), and one might expect to find such objects in {omega}Cen. Using high-resolution spectra from Magellan-M2FS, we detected 11 stars in a targeted sample of 395 that have [Fe/H] ranging from -2.30 to -2.52. These are the most metal-poor stars discovered in the cluster, and are five times more metal-poor than {omega}Cen's dominant population. However, these stars are not so metal-poor as to be unambiguously linked to a dwarf galaxy origin. The cluster's metal-poor tail appears to contain two populations near [Fe/H]~-2.1 and -2.4, which are very centrally concentrated but do not exhibit any peculiar kinematic signatures. Several possible origins for these stars are discussed.
- ID:
- ivo://CDS.VizieR/J/A+A/618/A15
- Title:
- Parameters of EHB stars in {omega} Cen
- Short Name:
- J/A+A/618/A15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The presence of extreme horizontal branch (EHB) and blue hook stars in some Galactic globular clusters (GGCs) constitutes one of the remaining mysteries of stellar evolution. While several evolutionary scenarios have been proposed to explain the characteristics of this peculiar population of evolved stars, their observational verification has been limited by the availability of spectroscopic data for a statistically significant sample of such objects in any single GGC. In this first paper, we focus on {omega} Centauri, a peculiar, massive GGC that hosts multiple stellar populations. We use non-LTE model atmospheres to derive atmospheric parameters (Teff, log g and N(He)/N(H)) and spectroscopic masses for 152 EHB stars in the cluster. We also search for close binaries among these stars based on radial velocity variations. The majority of our sample consists of sdOB stars that have roughly solar or super-solar atmospheric helium abundances. It is these objects that constitute the blue hook at V>18.5mag in the {omega} Cen colour-magnitude diagram.
- ID:
- ivo://CDS.VizieR/J/AJ/152/6
- Title:
- Parameters of Kepler stars using LAMOST & seismic data
- Short Name:
- J/AJ/152/6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Asteroseismology is a powerful tool to precisely determine the evolutionary status and fundamental properties of stars. With the unprecedented precision and nearly continuous photometric data acquired by the NASA Kepler mission, parameters of more than 10^4^ stars have been determined nearly consistently. However, most studies still use photometric effective temperatures (Teff) and metallicities ([Fe/H]) as inputs, which are not sufficiently accurate as suggested by previous studies. We adopted the spectroscopic Teff and [Fe/H] values based on the LAMOST low-resolution spectra (R~1,800), and combined them with the global oscillation parameters to derive the physical parameters of a large sample of stars. Clear trends were found between {Delta}logg(LAMOST-seismic) and spectroscopic Teff as well as logg, which may result in an overestimation of up to 0.5dex for the logg of giants in the LAMOST catalog. We established empirical calibration relations for the logg values of dwarfs and giants. These results can be used for determining the precise distances to these stars based on their spectroscopic parameters.
- ID:
- ivo://CDS.VizieR/J/AJ/158/73
- Title:
- Parameters of OB stars & their bow shock nebulae
- Short Name:
- J/AJ/158/73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Second only to initial mass, the rate of wind-driven mass loss determines the final mass of a massive star and the nature of its remnant. Motivated by the need to reconcile observational values and theory, we use a recently vetted technique to analyze the mass-loss rates in a sample of OB stars that generate bow shock nebulae. We measure peculiar velocities from new Gaia parallax and proper motion data and their spectral types from new optical and infrared spectroscopy. For our sample of 70 central stars in morphologically selected bow shock nebulae, 67 are OB stars. The median peculiar velocity is 11 km/s, significantly smaller than classical "runaway star" velocities. Mass-loss rates for these O and early B stars agree with recently lowered theoretical predictions, ranging from ~10^-7^ M_{sun}_/yr for mid-O dwarfs to 10^-9^ M_{sun}_/yr for late O dwarfs - a factor of about 2.7 lower than the often-used Vink et al. (2000A&A...362..295V, 2001A&A...369..574V) formulation. Our results provide the first observational mass-loss rates for B0-B3 dwarfs and giants - 10^-9^ to 10^-8^ M_{sun}_/yr. We find evidence for an increase in the mass-loss rates below a critical effective temperature, consistent with predictions of the bistability phenomenon in the range T_eff_=19000-27000 K. The sample exhibits a correlation between modified wind momentum and luminosity, consistent in slope but lower by 0.43 dex in magnitude compared to canonical wind-luminosity relations. We identify a small subset of objects deviating most significantly from theoretical expectations as probable radiation-driven bow wave nebulae by virtue of their low stellar-to-nebular luminosity ratios. For these, the inferred mass-loss rates must be regarded as upper limits.
- ID:
- ivo://CDS.VizieR/J/A+A/553/A95
- Title:
- PCA approach to stellar effective temperatures
- Short Name:
- J/A+A/553/A95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The derivation of the effective temperature of a star is a critical first step in order to perform a detailed spectroscopic analysis. Spectroscopic methods suffer from systematic errors related to model simplifications. Photometric methods may be more robust, but are exposed to distortions caused by interstellar reddening. Direct methods are difficult to apply, since fundamental data of high accuracy are hard to obtain. We explore a new approach in which the spectrum is used to characterize a star's effective temperature based on a calibration established by a small set of standard stars. We perform Principal Component Analysis on homogeneous libraries of stellar spectra, then calibrate a relationship between the principal components and the effective temperature using a set of stars with reliable effective temperatures. We find that our procedure gives excellent consistency when spectra from a homogeneous set of observations are used. Systematic offsets may appear when combining observations from different sources. Using as reference the spectra of stars with high-quality spectroscopic temperatures in the Elodie library, we define a temperature scale for FG-type disk dwarfs with an internal consistency of about 50K, in excellent agreement with temperatures from direct determinations, but distinct from widely-used scales based in the infrared flux method.
1297. PDS70 VLT/SPHERE images
- ID:
- ivo://CDS.VizieR/J/A+A/632/A25
- Title:
- PDS70 VLT/SPHERE images
- Short Name:
- J/A+A/632/A25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- PDS 70 is a young (5.4Myr), nearby (~113pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS70b, within the disk cavity. Moreover, observations in H{alpha} with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS70c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging. Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system. Methods. We re-analyzed archival SPHERE NIR observations and obtained new data in Y, J, H and K spectral bands for a total of four different epochs. The data were reduced using the data reduction and handling pipeline and the SPHERE data center. We then applied custom routines (e.g. ANDROMEDA and PACO) to subtract the starlight. We re-detect both PDS 70 b and c and confirm that PDS70c is gravitationally bound to the star. We estimate this second planet to be less massive than 5M_Jup_ and with a Teff around 900K. Also, it has a low gravity with log g between 3.0 and 3.5dex. In addition, a third object has been identified at short separation (~0.12") from the star and gravitationally bound to the star. Its spectrum is however very blue, so that we are probably seeing stellar light reflected by dust and our analysis seems to demonstrate that it is a feature of the inner disk. We, however, cannot completely exclude the possibility that it is a planetary mass object enshrouded by a dust envelope. In this latter case, its mass should be of the order of few tens of M_{Earth}_. Moreover, we propose a possible structure for the planetary system based on our data that, however, cannot be stable on a long timescale.
- ID:
- ivo://CDS.VizieR/J/AJ/135/1624
- Title:
- PEARS emission-line galaxies
- Short Name:
- J/AJ/135/1624
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Hubble Space Telescope Advanced Camera for Surveys grism Probing Evolution And Reionization Spectroscopically (PEARS) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS north and south fields. One important subset of objects in these data is emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here, we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques.
- ID:
- ivo://CDS.VizieR/J/AJ/141/64
- Title:
- PEARS emission-line galaxies spectroscopy
- Short Name:
- J/AJ/141/64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spectroscopy of 76 emission-line galaxies (ELGs) in Chandra Deep Field South taken with the LDSS3 spectrograph on the Magellan Telescope. These galaxies are selected because they have emission lines with the Advanced Camera for Surveys (ACS) grism data in the Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) grism Survey. The ACS grism spectra cover the wavelength range 6000-9700{AA} and most PEARS grism redshifts are based on a single emission line + photometric redshifts from broadband colors; the Magellan spectra cover a wavelength range from 4000{AA} to 9000{AA} and provide a check on redshifts derived from PEARS data.
- ID:
- ivo://CDS.VizieR/J/ApJ/793/132
- Title:
- Perseus cloud sources Gaussian parameters
- Short Name:
- J/ApJ/793/132
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the Arecibo Observatory, we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases, allowing us to estimate spin temperature (T_s_) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual H I clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium (CNM and WNM), respectively) in and around Perseus are very similar to those found for random interstellar lines of sight sampled by the Millennium H I survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have, on average, a higher total H I column density and the CNM fraction, suggesting an enhanced amount of cold H I relative to an average interstellar field. Our estimated optical depth and spin temperature are in stark contrast with the recent attempt at using Planck data to estimate properties of the optically thick H I. Only ~15% of lines of sight in our study have a column density weighted average spin temperature lower than 50 K, in comparison with >~85% of Planck's sky coverage. The observed CNM fraction is inversely proportional to the optical depth weighted average spin temperature, in excellent agreement with the recent numerical simulations by Kim et al. (2014ApJ...786...64K). While the CNM fraction is, on average, higher around Perseus relative to a random interstellar field, it is generally low, between 10%-50%. This suggests that extended WNM envelopes around molecular clouds and/or significant mixing of CNM and WNM throughout molecular clouds are present and should be considered in the models of molecule and star formation. Our detailed comparison of H I absorption with CO emission spectra shows that only 3 of the 26 directions are clear candidates for probing the CO-dark gas as they have N(H I)>10^21^/cm2 yet no detectable CO emission.