- ID:
- ivo://CDS.VizieR/J/AJ/144/125
- Title:
- Photometry and spectroscopy of Markarian 266
- Short Name:
- J/AJ/144/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a {approx}2.5x10^8^M_{sun}_ black hole. Although the nuclei have an observed hard X-ray flux ratio of f_X_(NE)/f_X_(SW)=6.4, Mrk 266 SW is likely the primary source of a bright Fe K{alpha} line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H_2_line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T~10^7^K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50Myr. Detection of 24{mu}m emission aligned with soft X-rays, radio continuum, and ionized gas emission extending ~34" (20kpc) north of the galaxies is interpreted as ~2x10^7^M_{sun}_ of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust "blow-out" phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early in the merger process may explain the paucity of detected binary QSOs (with parsec-scale orbital separations) in spectroscopic surveys. An evolutionary sequence is proposed representing a progression from dual to binary AGNs, accompanied by an increase in observed L_x_/L_ir_ ratios by over two orders of magnitude.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/147/7
- Title:
- Photometry and spectroscopy of NGC 6520
- Short Name:
- J/AJ/147/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use CCD and photoelectric photometry with Stromgren filters along with medium resolution spectra to investigate NGC 6520, an open cluster very nearly in the direction of the galactic center. We find an age of 60Myr, a distance of 2kpc, and an average reddening E(b-y)=0.295, which increases toward the south. The average heliocentric radial velocity of the B stars is -29km/s, while the velocity of the nearby Barnard 86 is about 0 (heliocentric; -11km/s compared to the LSR). This velocity difference amounts to about 1.8kpc since the cluster formed, implying that it is extremely doubtful NGC6520 is related to Barnard 86.
- ID:
- ivo://CDS.VizieR/J/MNRAS/491/655
- Title:
- Photometry and spectroscopy of RN LMC 1968
- Short Name:
- J/MNRAS/491/655
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive review of all observations of the eclipsing recurrent Nova LMC 1968 in the Large Magellanic Cloud which was previously observed in eruption in 1968, 1990, 2002, 2010, and most recently in 2016. We derive a probable recurrence time of 6.2+/-1.2yr and provide the ephemerides of the eclipse. In the ultraviolet-optical-IR photometry the light curve shows high variability right from the first observation around 2 d after eruption. Therefore no colour changes can be substantiated. Outburst spectra from 2016 and 1990 are very similar and are dominated by H and He lines longward of 2000{AA}. Interstellar reddening is found to be E(B-V)=0.07+/-0.01. The super soft X-ray luminosity is lower than the Eddington luminosity and the X-ray spectra suggest the mass of the white dwarf (WD) is larger than 1.3M_{sun}_. Eclipses in the light curve suggest that the system is at high orbital inclination. On day 4 after the eruption a recombination wave was observed in FeII ultraviolet absorption lines. Narrow-line components are seen after day 6 and explained as being due to reionization of ejecta from a previous eruption. The UV spectrum varies with orbital phase, in particular a component of the HeII 1640{AA} emission line, which leads us to propose that early-on the inner WD Roche lobe might be filled with a bound opaque medium prior to the re-formation of an accretion disc. Both this medium and the ejecta can cause the delay in the appearance of the soft X-ray source.
- ID:
- ivo://CDS.VizieR/J/AJ/159/173
- Title:
- Photometry & RVs of 4 dwarfs hosting giant planets
- Short Name:
- J/AJ/159/173
- Date:
- 09 Dec 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four transiting giant planets around K-dwarfs. The planets HATS-47b, HATS-48Ab, HATS-49b, and HATS-72b have masses of 0.369_-0.021_^+0.031^M_J_, 0.243_-0.030_^+0.022^M_J_, 0.353_-0.027_^+0.038^M_J_, and 0.1254{+/-}0.0039M_J_, respectively, and radii of 1.117{+/-}0.014R_J_, 0.800{+/-}0.015R_J_, 0.765{+/-}0.013R_J_, and 0.7224{+/-}0.0032R_J_, respectively. The planets orbit close to their host stars with orbital periods of 3.9228days, 3.1317days, 4.1480days, and 7.3279days, respectively. The hosts are main-sequence K-dwarfs with masses of 0.674_-0.012_^+0.016^M_{odot}_, 0.7279{+/-}0.0066M_{odot}_, 0.7133{+/-}0.0075M_{odot}_, and 0.7311{+/-}0.0028, and with V-band magnitudes of V=14.829{+/-}0.010, 14.35{+/-}0.11, 14.998{+/-}0.040 and 12.469{+/-}0.010. The super-Neptune HATS-72b (a.k.a. WASP-191b and TOI294.01) was independently identified as a transiting planet candidate by the HATSouth, WASP, and TESS surveys, and we present a combined analysis of all of the data gathered by each of these projects (and their follow-up programs). An exceptionally precise mass is measured for HATS-72b thanks to high-precision radial velocity (RV) measurements obtained with VLT/ESPRESSO, FEROS, HARPS, and Magellan/PFS. We also incorporate TESS observations of the warm Saturn-hosting systems HATS-47 (a.k.a. TOI1073.01), HATS-48A, and HATS-49. HATS-47 was independently identified as a candidate by the TESS team, while the other two systems were not previously identified from the TESS data. The RV orbital variations are measured for these systems using Magellan/PFS. HATS-48A has a resolved 5.4" neighbor in Gaia DR2, which is a common-proper-motion binary star companion to HATS-48A with a mass of 0.22M_{odot}_ and a current projected physical separation of ~1400au.
- ID:
- ivo://CDS.VizieR/J/AJ/161/221
- Title:
- Photometry & spectroscopy of 4 binaries stars
- Short Name:
- J/AJ/161/221
- Date:
- 16 Mar 2022 11:53:19
- Publisher:
- CDS
- Description:
- We present the photometric and spectroscopic analysis of four W-UMa binaries J015829.5+260333 (hereinafter as J0158), J030505.1+293443 (hereinafter as J0305), J102211.7+310022 (hereinafter as J1022), and KW-Psc. The VRcIc band photometric observations are carried out with the 1.3m Devasthal Fast Optical Telescope (DFOT). For low-resolution spectroscopy, we used the 2m Himalayan Chandra Telescope (HCT) as well as the archival data from the 4m LAMOST survey. The systems J0158 and J0305 show a period increase rate of 5.26({+/-}1.72)x10^-7^days/yr and 1.78({+/-}1.52)x10^-6^days/yr, respectively. The period of J1022 is found to be decreasing with a rate of 4.22({+/-}1.67)x10^-6^days/yr. The period analysis of KW-Psc displays no change in its period. The PHOEBE package is used for the light-curve modeling and basic parameters are evaluated with the help of the GAIA parallax. The asymmetry of light curves is explained with the assumption of cool spots at specific positions on one of the components of the system. On the basis of temperatures, mass ratios, fill-out factors, and periods, the system J1022 is identified as a W-subtype system while the others show some mixed properties. To probe the chromospheric activities in these W-UMa binaries, their spectra are compared with the known inactive stars' spectra. The comparison shows emission in H{alpha}, H{beta}, and CaII. To understand the evolutionary status of these systems, the components are plotted in mass-radius and mass-luminosity planes with other well characterized binary systems. The secondary components of all the systems are away from ZAMS, which indicates that the secondary is more evolved than the primary component.
- ID:
- ivo://CDS.VizieR/J/MNRAS/338/508
- Title:
- Photometry+spectroscopy of UCM galaxies
- Short Name:
- J/MNRAS/338/508
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of the integrated properties of the stellar populations in the Universidad Complutense de Madrid (UCM) Survey of H{alpha}-selected galaxies. In this paper, the first of a series, we describe in detail the techniques developed to model star-forming galaxies using a mixture of stellar populations, and taking into account the observational uncertainties. We assume a recent burst of star formation superimposed on a more evolved population. The effects of the nebular continuum, line emission and dust attenuation are taken into account. We also test different model assumptions, including the choice of specific evolutionary synthesis model, initial mass function, star formation scenario and the treatment of dust extinction. Quantitative tests are applied to determine how well these models fit our multiwavelength observations for the UCM sample. Our observations span the optical and near-infrared, including both photometric and spectroscopic data. Our results indicate that extinction plays a key role in this kind of study, revealing that low- and high-obscured objects may require very different extinction laws and must be treated differently. We also demonstrate that the UCM Survey galaxies are best described by a short burst of star formation occurring within a quiescent galaxy, rather than by continuous star formation. A detailed discussion on the inferred parameters, such as the age, burst strength, metallicity, star formation rate, extinction and total stellar mass for individual objects, is presented in Paper II of this series.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A6
- Title:
- Photospheric parameters of CARMENES stars
- Short Name:
- J/A+A/615/A6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2^ method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since Teff, logg, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma}_Teff_=51K, {sigma}_logg_=0.07, and {sigma}_[Fe/H]_=0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results.
- ID:
- ivo://CDS.VizieR/J/ApJ/800/7
- Title:
- Physical conditions of high redshift DLAs
- Short Name:
- J/ApJ/800/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A new method is used to measure the physical conditions of the gas in damped Ly{alpha} systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C^+^ and Si^+^. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ~100/cm3 and temperatures below 500K. We further find that the typical pressure of DLAs in our sample is log(P/k_B_)=3.4(K/cm3), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n_H_>0.1/cm3) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k_B_) in excess of 20000K/cm3, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A82
- Title:
- Physical parameters of classical Cepheids
- Short Name:
- J/A+A/616/A82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We gathered more than 1130 high-resolution optical spectra for more than 250 Galactic classical Cepheids. The spectra were collected with different optical spectrographs: UVES at VLT, HARPS at 3.6m, FEROS at 2.2m MPG/ESO, and STELLA. To improve the effective temperature estimates, we present more than 150 new line depth ratio (LDR) calibrations that together with similar calibrations already available in the literature allowed us to cover a broad range in wavelength (between 5348 and 8427 angstrom) and in effective temperatures (between 3500 and 7700K). This means the unique opportunity to cover both the hottest and coolest phases along the Cepheid pulsation cycle and to limit the intrinsic error on individual measurements at the level of ~100K. Thanks to the high signal-to-noise ratio of individual spectra we identified and measured hundreds of neutral and ionized lines of heavy elements, and in turn, have the opportunity to trace the variation of both surface gravity and microturbulent velocity along the pulsation cycle. The accuracy of the physical parameters and the number of FeI (more than one hundred) and FeII (more than ten) lines measured allowed us to estimate mean iron abundances with a precision better than 0.1dex. Here we focus on 14 calibrating Cepheids for which the current spectra cover either the entire or a significant portion of the pulsation cycle. The current estimates of the variation of the physical parameters along the pulsation cycle and of the iron abundances agree quite well with similar estimates available in the literature. Independent homogeneous estimates of both physical parameters and metal abundances based on different approaches that can constrain possible systematics are highly encouraged.
- ID:
- ivo://CDS.VizieR/J/A+A/555/A150
- Title:
- Physical parameters of cool solar-type stars
- Short Name:
- J/A+A/555/A150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Temperature, surface gravity, and metallicity are basic stellar atmospheric parameters necessary to characterize a star. There are several methods to derive these parameters and a comparison of their results often shows considerable discrepancies, even in the restricted group of solar-type FGK dwarfs. We want to check the differences in temperature between the standard spectroscopic technique based on iron lines and the infrared flux method (IRFM). We aim to improve the description of the spectroscopic temperatures especially for the cooler stars where the differences between the two methods are higher, as presented in a previous work. Our spectroscopic analysis was based on the iron excitation and ionization balance, assuming Kurucz model atmospheres in LTE. The abundance analysis was determined using the code MOOG. We optimized the line list using a cool star (HD 21749) with high resolution and high signal-to-noise spectrum, as a reference in order to check for weak, isolated lines. We test the quality of the new line list by re-deriving stellar parameters for 451 stars with high resolution and signal-to-noise HARPS spectra, that were analyzed in a previous work with a larger line list. The comparison in temperatures between this work and the latest IRFM for the stars in common shows that the differences for the cooler stars are significantly smaller and more homogeneously distributed than in previous studies for stars with temperatures below 5000K.