- ID:
- ivo://CDS.VizieR/J/A+A/448/155
- Title:
- Radial velocities of Leo I globular clusters
- Short Name:
- J/A+A/448/155
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- VLT/FLAMES radial velocities for 50 Globular Clusters (GCs), 37 field stars and 21 unclassified objects around the Leo I group galaxies NGC 3379 and NGC 3384 are presented. Object Id and BVR photometry are from Rhode & Zepf (2004AJ....127..302R). Positions (J2000.0) should be accurate to ~0"2 or better w.r.t. the GSC2.1 catalogue. Heliocentric radial velocities and their errors were estimated by fitting the peak (see the width, heigh, and Tonry & Davies (1979AJ.....84.1511T) coefficient) of the cross-correlation function (CCF) with the IRAF/RV package task FXCOR, using simulatenous and ELODIE library stellar templates. Objects have been assigned three quality class, class A being the most secure velocity determination, and class C the least secure; the latter objects require confirmation, and such GCs were not considered for the dynamical analysis presented in the paper.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/182/97
- Title:
- Radial velocities of multi-planet systems
- Short Name:
- J/ApJS/182/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Extrasolar multiple-planet systems provide valuable opportunities for testing theories of planet formation and evolution. The architectures of the known multiple-planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investigation of 22 planetary systems in an effort to answer three questions: (1) are there additional planets? (2) where could additional planets reside in stable orbits? and (3) what limits can these observations place on such objects? We find no evidence for additional bodies in any of these systems; indeed, these new data do not support three previously announced planets (HD 20367 b: Udry et al., 2003ASPCC..294...17U; HD 74156 d: Bean et al., 2008ApJ...672.1202B; and 47 UMa c: Fischer et al., 2002ApJ...564.1028F). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these nondetections.
- ID:
- ivo://CDS.VizieR/J/MNRAS/362/1167
- Title:
- Radial velocities of 14 southern Cepheids
- Short Name:
- J/MNRAS/362/1167
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high-resolution spectroscopic observations and species-by-species radial velocities of a number of southern Cepheids. The stars (BP Cir, V350 Sgr, AX Cir, V636 Sco, W Sgr, S Mus, {beta} Dor, TT Aql, Y Oph, YZ Car, SW Vel, X Pup, T Mon and l Car) were observed as part of a long-term programme at Mt John University Observatory. Radial velocities were determined with the line bisector technique, and have a precision of ~300m/s. Velocity differences as large as 30km/s were found for H and Ca II when referenced to the metallic line velocity curves, but more subtle variations (of 12km/s) were also detected in many other species. Pulsational phase anticorrelations are found between lines of Si II and Ba II, confirming the propagation time delay between line-forming layers producing these two species. We find that the amplitude and phase differences between the various species increase with period.
- ID:
- ivo://CDS.VizieR/J/ApJ/681/1254
- Title:
- Radial velocities of stars in the Galactic Center
- Short Name:
- J/ApJ/681/1254
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from K-band slit scan observations of a ~20"x20" region of the Galactic center (GC) in two separate epochs more than 5 years apart. The high-resolution (R={lamda}/{Delta}{lambda}>=14000) observations allow the most accurate radial velocity and acceleration measurements of the stars in the central parsec of the Galaxy. Detected stars can be divided into three groups based on the CO absorption band heads at ~2.2935um and the HeII lines at ~2.0581 and ~2.112, 2.113um: cool, narrow-line hot, and broad-line hot. The radial velocities of the cool, late-type stars have approximately a symmetrical distribution with its center at ~-7.8+/-10.3km/s and a standard deviation ~113.7+/-10.3km/s. Although our statistics are dominated by the brightest stars, we estimate a central black hole mass of (3.9+/-1.1)x10^6^M_{sun}_, consistent with current estimates from complete orbits of individual stars. Our surface density profile and the velocity dispersion of the late-type stars support the existence of a low-density region at the Galactic center suggested by earlier observations.
- ID:
- ivo://CDS.VizieR/J/AJ/160/251
- Title:
- Radial velocities & orbital data, 5 triple stars
- Short Name:
- J/AJ/160/251
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Joint analysis of radial velocities and position measurements of five hierarchical stellar systems is undertaken to determine elements of their inner and outer orbits and, whenever possible, their mutual inclinations. The inner and outer periods are 12.9 and 345yr for HD12376 (ADS1613), 1.14 and ~1500yr for HD19971 (ADS2390), 8.3 and 475yr for HD89795 (ADS7338), 1.11 and 40yr for HD152027, 0.69 and 7.4yr for HD190412. The latter system with its coplanar and quasi-circular orbits belongs to the family of compact planetary-like hierarchies, while the orbits in HD12376 have a mutual inclination of 131{deg}.
- ID:
- ivo://CDS.VizieR/J/ApJ/903/110
- Title:
- Radial velocity and g-i color in M85 globular clusters
- Short Name:
- J/ApJ/903/110
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- We present a study on the stellar population and kinematics of globular clusters (GCs) in the peculiar galaxy M85. We obtain optical spectra of 89 GCs at 8kpc<R<160kpc using the MMT/Hectospec. We divide them into three groups, blue/green/red GCs (B/G/RGCs), with their (g-i)0 colors. All GC subpopulations have mean ages of about 10Gyr, but showing differences in metallicities. The BGCs and RGCs are the most metal-poor ([Z/H]~-1.49) and metal-rich ([Z/H]~-0.45), respectively, and the GGCs are in between. We find that the inner GC system exhibits a strong overall rotation that is entirely due to a disklike rotation of the RGC system. The BGC system shows little rotation. The GGCs show kinematic properties clearly distinct among the GC subpopulations, having higher mean velocities than the BGCs and RGCs and being aligned along the major axis of M85. This implies that the GGCs have an origin different from the other GC subpopulations. The rotation-corrected velocity dispersion of the RGC system is much lower than that of the BGC system, indicating the truncation of the red halo of M85. The BGCs have a flat velocity dispersion profile out to R=67kpc, reflecting the dark matter extent of M85. Using the velocity dispersion of the BGC system, we estimate the dynamical mass of M85 to be 3.8x1012M{sun}. We infer that M85 has undergone merging events lately, resulting in the peculiar kinematics of the GC system.
- ID:
- ivo://CDS.VizieR/J/AJ/161/283
- Title:
- Radial velocity estimates of 4 stars with IGRINS
- Short Name:
- J/AJ/161/283
- Date:
- 08 Mar 2022
- Publisher:
- CDS
- Description:
- Application of the radial velocity (RV) technique in the near-infrared is valuable because of the diminished impact of stellar activity at longer wavelengths, making it particularly advantageous for the study of late-type stars but also for solar-type objects. In this paper, we present the IGRINS RV open-source python pipeline for computing infrared RV measurements from reduced spectra taken with IGRINS, an R~{lambda}/{Delta}{lambda}~45000 spectrograph with simultaneous coverage of the H-band (1.49-1.80{mu}m) and K-band (1.96-2.46{mu}m). Using a modified forward-modeling technique, we construct high-resolution telluric templates from A0 standard observations on a nightly basis to provide a source of common-path wavelength calibration while mitigating the need to mask or correct for telluric absorption. Telluric standard observations are also used to model the variations in instrumental resolution across the detector, including a yearlong period when the K-band was defocused. Without any additional instrument hardware, such as a gas cell or laser frequency comb, we are able to achieve precisions of 26.8m/s in the K-band and 31.1m/s in the H-band for narrow-line hosts. These precisions are empirically determined by a monitoring campaign of two RV standard stars, as well as the successful retrieval of planet-induced RV signals for both HD189733 and {tau}BooA; furthermore, our results affirm the presence of the Rossiter-McLaughlin effect for HD189733. The IGRINS RV pipeline extends another important science capability to IGRINS, with publicly available software designed for widespread use.
- ID:
- ivo://CDS.VizieR/J/AJ/162/117
- Title:
- Radial velocity for 19 RR Lyrae
- Short Name:
- J/AJ/162/117
- Date:
- 21 Mar 2022 00:54:18
- Publisher:
- CDS
- Description:
- We report 272 radial velocities for 19 RR-Lyrae variables. For most of the stars we have radial velocities for the complete pulsation cycle. These data are used to determine robust center-of-mass radial velocities that have been compared to values from the literature in a search for evidence of binary systems. Center-of-mass velocities were determined for each star using Fourier Series and template fits to the radial velocities. Our center-of-mass velocities have uncertainties from {+/-}0.16km/s to {+/-}2.5km/s, with a mean uncertainty of {+/-}0.92km/s. We combined our center-of-mass velocities with values from the literature to look for deviations from the mean center-of-mass velocity of each star. Fifteen RR-Lyrae show no evidence of binary motion (BK And, CI And, Z CVn, DM Cyg, BK Dra, RR Gem, XX Hya, SZ Leo, BX Leo, TT Lyn, CN Lyr, TU Per, U Tri, RV UMa, and AV Vir). In most cases this conclusion is reached due to the sporadic sampling of the center-of-mass velocities over time. Three RR Lyrae show suspicious variation in the center-of-mass velocities that may indicate binary motion but do not prove it (SS Leo, ST Leo, and AO Peg). TU UMa was observed by us near a predicted periastron passage (at 0.14 in orbital phase) but the absence of additional center-of-mass velocities near periastron makes the binary detection, based on radial velocities alone, uncertain. Two stars in our sample show H{gamma} emission in phases 0.9-1.0: SS Leo and TU UMa.
- ID:
- ivo://CDS.VizieR/J/AJ/159/235
- Title:
- Radial Velocity jitters in ~600 planet host stars
- Short Name:
- J/AJ/159/235
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Radial velocity (RV) detection of planets is hampered by astrophysical processes on the surfaces of stars that induce a stochastic signal, or "jitter," which can drown out or even mimic planetary signals. Here, we empirically and carefully measure the RV jitter of more than 600 stars from the California Planet Search sample on a star by star basis. As part of this process, we explore the activity-RV correlation of stellar cycles and include appendices listing every ostensibly companion-induced signal we removed and every activity cycle we noted. We then use precise stellar properties from Brewer+, 2017ApJS..230...12B to separate the sample into bins of stellar mass and examine trends with activity and with evolutionary state. We find that RV jitter tracks stellar evolution and that in general, stars evolve through different stages of RV jitter: the jitter in younger stars is driven by magnetic activity, while the jitter in older stars is convectively driven and dominated by granulation and oscillations. We identify the "jitter minimum"-where activity-driven and convectively driven jitter have similar amplitudes-for stars between 0.7 and 1.7M{sun} and find that more-massive stars reach this jitter minimum later in their lifetime, in the subgiant or even giant phases. Finally, we comment on how these results can inform future RV efforts, from prioritization of follow-up targets from transit surveys like the Transiting Exoplanet Survey Satellite (TESS) to target selection of future RV surveys.
- ID:
- ivo://CDS.VizieR/J/ApJS/244/27
- Title:
- Radial velocity measurements in LAMOST-II
- Short Name:
- J/ApJS/244/27
- Date:
- 09 Dec 2021
- Publisher:
- CDS
- Description:
- The radial velocity (RV) is a basic physical quantity that can be determined through the Doppler shift of the spectrum of a star. The precision of the RV measurement depends on the resolution of the spectrum we used and the accuracy of wavelength calibration. In this work, radial velocities of the Large Sky Area Multi-Object Fibre Spectroscopic Telescope-II (LAMOST-II) medium-resolution (R~7500) spectra are measured for 1,594,956 spectra (each spectrum has two wavebands) through matching with templates. A set of RV standard stars are used to recalibrate the zero point of the measurement, and some reference sets with RVs derived from medium-/high-resolution observations are used to evaluate the accuracy of the measurement. By comparing with reference sets, the accuracy of our measurement can get 0.0277km/s with respect to radial velocities of standard stars. The intrinsic precision is estimated with the multiple observations of single stars, which can be achieved to 1.36km/s, 1.08km/s, and 0.91km/s for the spectra at signal-to-noise levels of 10, 20, and 50, respectively.