- ID:
- ivo://CDS.VizieR/J/MNRAS/454/1976
- Title:
- Abundance ratio for 5 local stellar associations
- Short Name:
- J/MNRAS/454/1976
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have observed high-dispersion echelle spectra of main-sequence stars in five nearby young associations - Argus, Carina-Near, Hercules-Lyra, Orion and Subgroup B4 - and derived abundances for elements ranging from Na to Eu. These are the first chemical abundance measurements for two of the five associations, while the remaining three associations are analysed more extensively in our study. Our results support the presence of chemical homogeneity among association members with a typical star-to-star abundance scatter of about 0.06dex or less over many elements. The five associations show log {epsilon}(Li) consistent with their age and share a solar chemical composition for all elements with the exception of Ba. We find that all the heavy elements (Y, Zr, La, Ce, Nd, Sm and Eu) exhibit solar ratios, i.e. [X/Fe]=~0, while Ba is overabundant by about 0.2-0.3dex. The origin of the overabundance of Ba is a puzzle. Within the formulation of the s-process, it is difficult to create a higher Ba abundance without a similar increase in the s-process contributions to other heavy elements (La-Sm). Given that Ba is represented by strong lines of Ba II and La-Sm are represented by rather weak ionized lines, the suggestion, as previously made by other studies, is that the Ba abundance may be systematically overestimated by standard methods of abundance analysis perhaps because the upper reaches of the stellar atmospheres are poorly represented by standard model atmospheres. A novel attempt to analyse the Ba I line at 5535{AA} gives a solar Ba abundance for stars with effective temperatures hotter than about 5800K but increasingly subsolar Ba abundances for cooler stars with apparent Ba deficiencies of 0.5dex at 5100K. This trend with temperature may signal a serious non-local thermodynamical equilibrium effect on the Ba I line.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/617/A132
- Title:
- Abundances and distributions of CS and SiS
- Short Name:
- J/A+A/617/A132
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Sulphur has long been known to form different molecules depending on the chemical composition of its environment. More recently, the sulphur-bearing molecules SO and H2S have been shown to behave differently in oxygen-rich asymptotic giant branch (AGB) circumstellar envelopes of different densities. By surveying a diverse sample of AGB stars for CS and SiS emission, we aim to determine in which environments these sulphur-bearing molecules most readily occur. We include sources with a range of mass-loss rates and carbon-rich, oxygen-rich, and mixed S-type chemistries. Where these molecules are detected, we aim to determine their CS and SiS abundances. We surveyed 20 AGB stars of different chemical types using the APEX telescope, and combined this with an IRAM 30m and APEX survey of CS and SiS emission towards over 30 S-type stars. For those stars with detections, we performed radiative transfer modelling to determine abundances and abundance distributions. We detect CS towards all the surveyed carbon stars, some S-type stars, and the highest mass-loss rate oxygen-rich stars, (dM/dt>=5x10^-6^M_[sun}_/yr). SiS is detected towards the highest mass-loss rate sources of all chemical types (dM/dt>=8x10^-7^M_{sun}_/yr). We find CS peak fractional abundances ranging from ~4x10^-7^ to ~2x10^-5^ for the carbon stars, from ~3x10^-8^ to ~1x10^-7^ for the oxygen-rich stars, and from ~1x10^-7^ to ~8x10^-6^ for the S-type stars. We find SiS peak fractional abundances ranging from ~9x10^-6^ to ~2x10^-5^ for the carbon stars, from ~5x10^-7^ to ~2x10^-6^ for the oxygen-rich stars, and from ~2x10^-7^ to ~2x10^-^6 for the S-type stars. Overall, we find that wind density plays an important role in determining the chemical composition of AGB circumstellar envelopes. It is seen that for oxygen-rich AGB stars both CS and SiS are detected only in the highest density circumstellar envelopes and their abundances are generally lower than for carbon-rich AGB stars by around an order of magnitude. For carbon-rich and S-type stars SiS was also only detected in the highest density circumstellar envelopes, while CS was detected consistently in all surveyed carbon stars and sporadically among the S-type stars.
- ID:
- ivo://CDS.VizieR/J/A+A/569/A55
- Title:
- Abundances and vsini for 348 red giants
- Short Name:
- J/A+A/569/A55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Li and alpha-elements abundances, as well as rotational velocities for 348 stars. Li has been detected in 92 stars, of which 82 are giants. Those data ware used to investigate various channels of Li enrichment in giants.
- ID:
- ivo://CDS.VizieR/J/ApJS/245/34
- Title:
- Abundances for 6 million stars from LAMOST DR5
- Short Name:
- J/ApJS/245/34
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the determination of stellar parameters and individual elemental abundances for 6 million stars from ~8 million low-resolution (R~1800) spectra from LAMOST DR5. This is based on a modeling approach that we dub the data-driven Payne (DD-Payne), which inherits essential ingredients from both the Payne and the Cannon. It is a data-driven model that incorporates constraints from theoretical spectral models to ensure the derived abundance estimates are physically sensible. Stars in LAMOST DR5 that are in common with either GALAH DR2 or APOGEE DR14 are used to train a model that delivers stellar parameters (Teff, log g, Vmic) and abundances for 16 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ba) over a metallicity range of -4dex<[Fe/H]<0.6dex when applied to the LAMOST spectra. Cross-validation and repeat observations suggest that, for S/N_pixel_>=50, the typical internal abundance precision is 0.03-0.1dex for the majority of these elements, with 0.2-0.3dex for Cu and Ba, and the internal precision of Teff and logg is better than 30K and 0.07dex, respectively. Abundance systematics at the ~0.1dex level are present in these estimates but are inherited from the high-resolution surveys' training labels. For some elements, GALAH provides more robust training labels, for others, APOGEE. We provide flags to guide the quality of the label determination and identify binary/multiple stars in LAMOST DR5.
- ID:
- ivo://CDS.VizieR/J/ApJ/865/68
- Title:
- Abundances for 79 Sun-like stars within 100pc
- Short Name:
- J/ApJ/865/68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The compositions of stars are a critical diagnostic tool for many topics in astronomy such as the evolution of our Galaxy, the formation of planets, and the uniqueness of the Sun. Previous spectroscopic measurements indicate a large intrinsic variation in the elemental abundance patterns of stars with similar overall metal content. However, systematic errors arising from inaccuracies in stellar models are known to be a limiting factor in such studies, and thus it is uncertain to what extent the observed diversity of stellar abundance patterns is real. Here we report the abundances of 30 elements with precisions of 2% for 79 Sun-like stars within 100pc. Systematic errors are minimized in this study by focusing on solar twin stars and performing a line-by-line differential analysis using high-resolution, high-signal-to-noise spectra. We resolve [X/Fe] abundance trends in galactic chemical evolution at precisions of 10^-3^dex/Gyr and reveal that stars with similar ages and metallicities have nearly identical abundance patterns. Contrary to previous results, we find that the ratios of carbon-to-oxygen and magnesium-to-silicon in solar-metallicity stars are homogeneous to within 10% throughout the solar neighborhood, implying that exoplanets may exhibit much less compositional diversity than previously thought. Finally, we demonstrate that the Sun has a subtle deficiency in refractory material relative to >80% of solar twins (at 2{sigma} confidence), suggesting a possible signpost for planetary systems like our own.
- ID:
- ivo://CDS.VizieR/J/A+A/572/A33
- Title:
- Abundances from Gaia-ESO Survey
- Short Name:
- J/A+A/572/A33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Most high-resolution spectroscopic studies of the Galactic discs were mostly confined to objects in the solar vicinity. Here we aim at enlarging the volume in which individual chemical abundances are used to characterise both discs, using the first internal data release of the Gaia-ESO survey. We derive and discuss the abundances of eight elements (Mg, Al, Si, Ca, Ti, Fe, Cr, Ni, and Y). The trends of these elemental abundances with iron are very similar to those in the solar neighbourhood. We find a natural division between {alpha}-rich and {alpha}-poor stars, best seen in the bimodality of the [Mg/M] distributions in bins of metallicity, which we attribute to thick- and thin-disc sequences, respectively. With the possible exception of Al, the observed dispersion around the trends is well described by the expected errors, leaving little room for astrophysical dispersion. Using previously derived distances from Recio-Blanco et al. (2014A&A...567A...5R), we further find that the thick-disc is more extended vertically and is more centrally concentrated towards the inner Galaxy than the thin-disc, which indicates a shorter scale-length. We derive the radial and vertical gradients in metallicity, iron, four {alpha}-element abundances, and Al for the two populations, taking into account the identified correlation between R_GC_ and |Z|. Radial metallicity gradient is found in the thin disc. The positive radial individual [{alpha}/M] gradients found are at variance from the gradients observed in the RAVE survey. The thin disc also hosts a negative vertical metallicity gradient, accompanied by positive individual [{alpha}/M] and [Al/M] gradients. The thick-disc, presents no radial metallicity gradient, a shallower vertical metallicity gradient than the thin-disc, an {alpha}-elements-to-iron radial gradient in the opposite sense than that of the thin disc, and positive vertical individual [{alpha}/M] and [Al/M] gradients.
- ID:
- ivo://CDS.VizieR/J/A+A/644/A68
- Title:
- Abundance signature of M dwarf stars
- Short Name:
- J/A+A/644/A68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Most of our current knowledge on planet formation is still based on the analysis of main-sequence, solar-type stars. Conversely, detailed chemical studies of large samples of M-dwarf planet hosts are still missing. We aim to test whether the correlations between the metallicity, individual chemical abundances, and mass of the star and the presence of different type of planets found for FGK stars still holds for the less massive M dwarf stars. Methods to determine in a consistent way stellar abundances of M dwarfs from high-resolution optical spectra are still missing. The present work is a first attempt to fill this gap. We analyse in a coherent and homogeneous way a large sample of M dwarfs with and without known planetary companions. We develop for the first time a methodology to determine stellar abundances of elements others than iron for M dwarf stars from high-resolution, optical spectra. Our methodology is based on the use of principal component analysis and sparse Bayesian's methods. We made use of a set of M dwarfs orbiting around an FGK primary with known abundances to train our methods. We applied our methods to derive stellar metallicities and abundances of a large sample of M dwarfs observed within the framework of current radial velocity surveys. We then used a sample of nearby FGK stars to cross-validate our technique by comparing the derived abundance trends in the M dwarf sample with those found on the FGK stars. The metallicity distribution of the different subsamples shows that M dwarfs hosting giant planets show a planet-metallicity correlation as well as a correlation with the stellar mass. M dwarfs hosting low-mass planets do not seem to follow the planet-metallicity correlation. We also found that the frequency of low-mass planets does not depend on the mass of the stellar host. These results seem in agreement with previous works. However, we note that for giant planet hosts our metallicities predict a weaker planet metallicity correlation but a stronger mass-dependency than photometric values. We show, for the first time, that there seems to be no differences in the abundance distribution of elements different from iron between M dwarfs with and without known planets. Our data shows that low-mass stars with planets follow the same metallicity, mass, and abundance trends than their FGK counterparts, which are usually explained within the framework of core-accretion models.
- ID:
- ivo://CDS.VizieR/J/A+A/580/A24
- Title:
- Abundances in dwarfs, subgiants, and giants
- Short Name:
- J/A+A/580/A24
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have analyzed high-resolution and high signal-to-noise ratio optical spectra of nearby FGK stars with and without detected giant planets in order to homogeneously measure their photospheric parameters, mass, age, and the abundances of volatile (C, N, and O) and refractory (Na, Mg, Si, Ca, Ti, V, Mn, Fe, Ni, Cu, and Ba) elements. Our sample contains 309 stars from the solar neighborhood (up to the distance of 100pc), out of which 140 are dwarfs, 29 are subgiants, and 140 are giants. The photospheric parameters are derived from the equivalent widths (EWs) of FeI and FeII lines. Masses and ages come from the interpolation in evolutionary tracks and isochrones on the HR diagram. The abundance determination is based on the equivalent widths of selected atomic lines of the refractory elements and on the spectral synthesis of C_2_, CN, CI, OI, and NaI features. We apply a set of statistical methods to analyze the abundances derived for the three subsamples. Our results show that: i) giant stars systematically exhibit underabundance in [C/Fe] and overabundance in [N/Fe] and [Na/Fe] in comparison with dwarfs, a result that is normally attributed to evolution-induced mixing processes in the envelope of evolved stars; ii) for solar analogs only, the abundance trends with the condensation temperature of the elements are correlated with age and anticorrelated with the surface gravity, which is in agreement with recent studies; iii) as in the case of [Fe/H], dwarf stars with giant planets are systematically enriched in [X/H] for all the analyzed elements, except for O and Ba (the former due to limitations of statistics), confirming previous findings in the literature that not only iron has an important relation with the planetary formation; and iv) giant planet hosts are also significantly overabundant for the same metallicity when the elements from Mg to Cu are combined together.
- ID:
- ivo://CDS.VizieR/J/ApJ/857/2
- Title:
- Abundances in 6 metal-poor stars
- Short Name:
- J/ApJ/857/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new abundances derived from CuI, CuII, ZnI, and ZnII lines in six warm (5766<=T_eff_<=6427K), metal-poor (-2.50<=[Fe/H]<=-0.95) dwarf and subgiant (3.64<=logg<=4.44) stars. These abundances are derived from archival high-resolution ultraviolet spectra from the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and ground-based optical spectra from several observatories. Ionized Cu and Zn are the majority species, and abundances derived from CuII and ZnII lines should be largely insensitive to departures from local thermodynamic equilibrium (LTE). We find good agreement between the [Zn/H] ratios derived separately from ZnI and ZnII lines, suggesting that departures from LTE are, at most, minimal (<~0.1dex). We find that the [Cu/H] ratios derived from CuII lines are 0.36+/-0.06dex larger than those derived from CuI lines in the most metal-poor stars ([Fe/H]{<}-1.8), suggesting that LTE underestimates the Cu abundance derived from CuI lines. The deviations decrease in more metal-rich stars. Our results validate previous theoretical non-LTE calculations for both Cu and Zn, supporting earlier conclusions that the enhancement of [Zn/Fe] in metal-poor stars is legitimate, and the deficiency of [Cu/Fe] in metal-poor stars may not be as large as previously thought.
- ID:
- ivo://CDS.VizieR/J/A+A/579/A104
- Title:
- Abundances in NGC 5053 and NGC 5634
- Short Name:
- J/A+A/579/A104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of "unassociated" MW halo globulars, and of the metal poor Sgr dSph main body population. We derive a metallicity of [FeII/H]=-2.26+/-0.10 for NGC 5053, and of [FeI/H]=-1.99+/-0.075 and -1.97+/-0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal poor globular clusters in the MW. Both clusters display an alpha enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. The chemistry of the Sgr dSph main body populations is similar to the one of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system.