- ID:
- ivo://CDS.VizieR/J/A+A/607/A44
- Title:
- FLAMES observations of NGC6535
- Short Name:
- J/A+A/607/A44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To understand globular clusters (GCs) we need to comprehend how their formation process was able to produce their abundance distribution of light elements. In particular, we need to figure out which stars imprinted the peculiar chemical signature of GCs. One of the best way is to study the light-element anti-correlations in a large sample of GCs, analysed homogeneously. As part of our spectroscopic survey of GCs with FLAMES, we present here the results of our study of about 30 red giant member stars in the low-mass, low-metallicity Milky Way cluster NGC 6535. We measured its metallicity (finding [Fe/H]=-1.95, rms=0.04dex in our homogeneous scale) and other elements, in particular we concentrate here on O and Na abundances. These elements define the normal Na-O anti-correlation of classical GCs, making NGC 6535 perhaps the lowest mass cluster with confirmed presence of multiple populations. We updated the census of Galactic and extragalactic GCs for which a statement on the presence or absence of multiple populations can be made on the basis of high-resolution spectroscopy preferentially, or photometry and low-resolution spectroscopy otherwise, discussing the importance of mass and age of the clusters.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/805/65
- Title:
- FLAMES observations of NGC 5128's globular clusters
- Short Name:
- J/ApJ/805/65
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the dynamical properties of 125 compact stellar systems (CSSs) in the nearby giant elliptical galaxy NGC 5128, using high-resolution spectra (R~26000) obtained with Very Large Telescope/FLAMES. Our results provide evidence for a new type of star cluster, based on the CSS dynamical mass scaling relations. All radial velocity (v_r_) and line-of-sight velocity dispersion ({sigma}_los_) measurements are performed with the penalized pixel fitting (ppxf) technique, which provided {sigma}_ppxf_ estimates for 115 targets. The {sigma}_ppxf_ estimates are corrected to the 2D projected half-light radii, {sigma}_1/2_, as well as the cluster cores, {sigma}_0_, accounting for observational/aperture effects and are combined with structural parameters, from high spatial resolution imaging, in order to derive total dynamical masses (M_dyn_) for 112 members of NGC5128's star cluster system. In total, 89 CSSs have dynamical masses measured for the first time along with the corresponding dynamical mass-to-light ratios ({sigma}_1/2_). We find two distinct sequences in the {gamma}^dyn^_V_-M_dyn_ plane, which are well approximated by power laws of the forms {gamma}^dyn^_V_{propto}M_dyn_^0.33+/-0.04^ and {gamma}^dyn^_V_{propto}M_dyn_^0.79+/-0.04^. The shallower sequence corresponds to the very bright tail of the globular cluster luminosity function (GCLF), while the steeper relation appears to be populated by a distinct group of objects that require significant dark gravitating components such as central massive black holes and/or exotically concentrated dark matter distributions. This result would suggest that the formation and evolution of these CSSs are markedly different from the "classical" globular clusters in NGC 5128 and the Local Group, despite the fact that these clusters have luminosities similar to the GCLF turnover magnitude. We include a thorough discussion of myriad factors potentially influencing our measurements.
- ID:
- ivo://CDS.VizieR/J/ApJ/696/729
- Title:
- Fluxes and abundances of PNe in M33
- Short Name:
- J/ApJ/696/729
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The planetary nebula (PN) population of M33 is studied via multifiber spectroscopy with Hectospec at the MMT. In this paper, we present the spectra of 102 PNe, whereas plasma diagnostic and chemical abundances were performed on the 93 PNe where the necessary diagnostic lines were measured. About 20% of the PNe are compatible with being Type I; the rest of the sample is the progeny of an old disk stellar population, with main sequence masses M<3M_{sun}_ and ages t>0.3Gyr. Our observations do not seem to imply that the metallicity gradient across the M33 disk has flattened considerably with time. We report also the discovery of a PN with Wolf-Rayet features, PN039, belonging the class of late [WC] stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/812/39
- Title:
- Fluxes of NGG7793 & NGC4945 with GMOS-S
- Short Name:
- J/ApJ/812/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Gas-phase abundances in HII regions of two spiral galaxies, NGC7793 and NGC4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8m Gemini South telescope. We found that NGC7793 has a well-defined gas-phase radial oxygen gradient of -0.321+/-0.112dexR_25_^-1^ (or -0.054+/-0.019dex/kpc) in the galactocentric range 0.17<R_G_/R_25_<0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC 4945, -0.253+/-0.149dexR_25_^-1^ (or -0.019+/-0.011dex/kpc) for 0.04<R_G_/R_25_<0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC 7793 and NGC 4945 have been selected for this study because they are similar, in mass and morphology, to M33 and the Milky Way, respectively. Since at zeroth order we expect the radial metallicity gradients to depend on mass and galaxy type, we compared our galaxies in the framework of radial metallicity models best suited for M33 and the Galaxy. We found a good agreement between M33 and NGC7793, pointing toward similar evolution for the two galaxies. We notice instead differences between NGC 4945 and the radial metallicity gradient model that best fits the Milky Way. We found that these differences are likely related to the presence of an active galactic nucleus combined with a bar in the central regions of NGC 4945, and to its interacting environment.
- ID:
- ivo://CDS.VizieR/J/ApJS/220/12
- Title:
- FMOS-COSMOS survey III. 0.7<z<2.5 galaxies
- Short Name:
- J/ApJS/220/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the H{alpha} emission line that falls within the H-band (1.6-1.8{mu}m) spectroscopic window from star-forming galaxies with 1.4<z<1.7 and M_stellar_>~10^10^M_{sun}_. With the high multiplex capability of FMOS, it is now feasible to construct samples of over 1000 galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R~2600) effectively separates H{alpha} and [NII]{lambda}6585, thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate (SFR)--stellar mass relation. Galaxies with H{alpha} detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11-1.35{mu}m) grating to detect H{beta} and [OIII]{lambda}5008 which provides an assessment of the extinction required to measure SFRs not hampered by dust, and an indication of embedded active galactic nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.
- ID:
- ivo://CDS.VizieR/J/ApJ/890/131
- Title:
- Follow-up of candidate counterparts of S190814bv
- Short Name:
- J/ApJ/890/131
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star-black hole (NSBH) merger, or potentially a low-mass binary BH merger. Due to the low false-alarm rate and the precise localization (23deg^2^ at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to an NSBH merger. To search for potential counterparts, the GROWTH Collaboration performed real-time image subtraction on six nights of public Dark Energy Camera images acquired in the 3 weeks following the merger, covering >98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be M_ej_<0.04M_{sun}_ at polar viewing angles, or M_ej_<0.03M_{sun}_ if the opacity is {kappa}<2cm^2^g^-1^. Assuming a tidal deformability for the NS at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be {chi}<0.7 for mass ratios Q<6, with weaker constraints for more compact NSs.
- ID:
- ivo://CDS.VizieR/J/ApJ/815/57
- Title:
- Follow-up spectroscopy of Ly{alpha} 3<z<7 emitters
- Short Name:
- J/ApJ/815/57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We explore the relationship between the spectral shape of the Ly{alpha} emission and the UV morphology of the host galaxy using a sample of 304 Ly{alpha}-emitting BVi-dropouts at 3<z<7 in the Great Observatories Origins Deep Survey and Cosmic Evolution Survey fields. Using our extensive reservoir of high-quality Keck DEIMOS spectra combined with Hubble Space Telescope WFC3 data, we measure the Ly{alpha} line asymmetries for individual galaxies and compare them to axial ratios measured from observed J- and H-band (restframe UV) images. We find that the Ly{alpha} skewness exhibits a large scatter at small elongation (a/b<2), and this scatter decreases as the axial ratio increases. Comparison of this trend to radiative transfer models and various results from the literature suggests that these high-redshift Ly{alpha} emitters are not likely to be intrinsically round and symmetric disks, but they probably host galactic outflows traced by Ly{alpha} emitting clouds. The ionizing sources are centrally located, and the optical depth is a good indicator of the absorption and scattering events on the escape path of Ly{alpha} photons from the source. Our results find no evidence of evolution in Ly{alpha} asymmetry or axial ratio with look-back time.
- ID:
- ivo://CDS.VizieR/J/ApJ/874/8
- Title:
- Follow-up spectroscopy of SDSS changing-look QSOs
- Short Name:
- J/ApJ/874/8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Active galactic nuclei (AGNs) that show strong rest-frame optical/UV variability in their blue continuum and broad line emission are classified as changing-look AGN, or at higher luminosities, changing-look quasars (CLQs). These surprisingly large and sometimes rapid transitions challenge accepted models of quasar physics and duty cycles, offer several new avenues for study of quasar host galaxies, and open a wider interpretation of the cause of differences between broad and narrow-line AGN. To better characterize extreme quasar variability, we present follow-up spectroscopy as part of a comprehensive search for CLQs across the full Sloan Digital Sky Survey (SDSS) footprint using spectroscopically confirmed quasars from the SDSS DR7 catalog. Our primary selection requires large-amplitude (|{Delta}g|>1mag, |{Delta}r|>0.5mag) variability over any of the available time baselines probed by the SDSS and Pan-STARRS 1 surveys. We employ photometry from the Catalina Sky Survey to verify variability behavior in CLQ candidates where available, and confirm CLQs using optical spectroscopy from the William Herschel, MMT, Magellan, and Palomar telescopes. For our adopted signal-to-noise ratio threshold on variability of broad H{beta} emission, we find 17 new CLQs, yielding a confirmation rate of >~20%. These candidates are at lower Eddington ratio relative to the overall quasar population, which supports a disk-wind model for the broad line region. Based on our sample, the CLQ fraction increases from 10% to roughly half as the continuum flux ratio between repeat spectra at 3420{AA} increases from 1.5 to 6. We release a catalog of more than 200 highly variable candidates to facilitate future CLQ searches.
- ID:
- ivo://CDS.VizieR/J/ApJ/825/72
- Title:
- Follow-up study of gal. & AGNs in z>1 clusters
- Short Name:
- J/ApJ/825/72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed, multi-wavelength study of star formation (SF) and active galactic nucleus (AGN) activity in 11 near-infrared (IR) selected, spectroscopically confirmed massive (>~10^14^M_{sun}_) galaxy clusters at 1<z<1.75. Using new deep Herschel/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGNs through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs) and specific SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at z>~1.4 is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores (r<0.5Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by z~1. Enhanced SFRs are found in lower mass (10.1<logM_*_/M_{sun}_<10.8) cluster galaxies. We find significant variation in SF from cluster to cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGNs in clusters from z=0.5-2, finding an excess AGN fraction at z>~1, suggesting environmental triggering of AGNs during this epoch. We argue that our results --a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGNs-- are consistent with a co-evolution between SF and AGNs in clusters and an increased merger rate in massive halos at high redshift.
- ID:
- ivo://CDS.VizieR/J/ApJ/901/134
- Title:
- Foreground galaxies toward FRB 190608 from SDSS
- Short Name:
- J/ApJ/901/134
- Date:
- 21 Feb 2022 09:50:38
- Publisher:
- CDS
- Description:
- Fast radio burst (FRB) 190608 was detected by the Australian Square Kilometre Array Pathfinder (ASKAP) and localized to a spiral galaxy at z_host_=0.11778 in the Sloan Digital Sky Survey (SDSS) footprint. The burst has a large dispersion measure (DM_FRB_=339.8pc/cm^3^) compared to the expected cosmic average at its redshift. It also has a large rotation measure (RM_FRB_=353rad/m^2^) and scattering timescale ({tau}=3.3ms at 1.28GHz). Chittidi+ (2021ApJ...922..173C) perform a detailed analysis of the ultraviolet and optical emission of the host galaxy and estimate the host DM contribution to be 110+/-37pc/cm^3^. This work complements theirs and reports the analysis of the optical data of galaxies in the foreground of FRB 190608 in order to explore their contributions to the FRB signal. Together, the two studies delineate an observationally driven, end-to-end study of matter distribution along an FRB sightline, the first study of its kind. Combining our Keck Cosmic Web Imager (KCWI) observations and public SDSS data, we estimate the expected cosmic dispersion measure DM_cosmic along the sightline to FRB 190608. We first estimate the contribution of hot, ionized gas in intervening virialized halos (DM_halos_~7-28pc/cm^3^). Then, using the Monte Carlo Physarum Machine methodology, we produce a 3D map of ionized gas in cosmic web filaments and compute the DM contribution from matter outside halos (DM_IGM_~91-126pc/cm^3^). This implies that a greater fraction of ionized gas along this sightline is extant outside virialized halos. We also investigate whether the intervening halos can account for the large FRB rotation measure and pulse width and conclude that it is implausible. Both the pulse broadening and the large Faraday rotation likely arise from the progenitor environment or the host galaxy.