- ID:
- ivo://CDS.VizieR/J/ApJ/898/150
- Title:
- High-res. MIKE obs. of metal-poor stars
- Short Name:
- J/ApJ/898/150
- Date:
- 21 Mar 2022 08:50:22
- Publisher:
- CDS
- Description:
- Extensive progress has recently been made in our understanding of heavy-element production via the r-process in the universe, specifically with the first observed neutron star binary merger (NSBM) event associated with the gravitational-wave signal detected by LIGO, GW170817. The chemical abundance patterns of metal-poor r-process-enhanced stars provide key evidence for the dominant site(s) of the r-process and whether NSBMs are sufficiently frequent or prolific r-process sources to be responsible for the majority of r-process material in the universe. We present atmospheric stellar parameters (using a nonlocal thermodynamic equilibrium analysis) and abundances from a detailed analysis of 141 metal-poor stars carried out as part of the R-Process Alliance (RPA) effort. We obtained high-resolution "snapshot" spectroscopy of the stars using the MIKE spectrograph on the 6.5m Magellan Clay telescope at Las Campanas Observatory in Chile. We find 10 new highly enhanced r-II (with [Eu/Fe]>+1.0), 62 new moderately enhanced r-I (+0.3<[Eu/Fe]<~+1.0), and 17 new limited-r ([Eu/Fe]<+0.3) stars. Among those, we find 17 new carbon-enhanced metal-poor (CEMP) stars, of which five are CEMP-no. We also identify one new s-process-enhanced ([Ba/Eu]>+0.5) and five new r/s (0.0<[Ba/Eu]<+0.5) stars. In the process, we discover a new ultra-metal-poor (UMP) star at [Fe/H]=-4.02. One of the r-II stars shows a deficit in {alpha} and Fe-peak elements, typical of dwarf galaxy stars. Our search for r-process-enhanced stars by RPA efforts has already roughly doubled the known r-process sample.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/834/105
- Title:
- High-resolution GC abundances. II.
- Short Name:
- J/ApJ/834/105
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ~0.1dex for GCs with metallicities as high as [Fe/H]=-0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II, V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni I, and Ba II. The elements that show the greatest differences include Mg I and Zr I. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.
- ID:
- ivo://CDS.VizieR/J/ApJ/822/40
- Title:
- High resolution NIR RVs of K2-M4 low-mass stars
- Short Name:
- J/ApJ/822/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2-M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (~25-150Myr) moving groups, the young field star {epsilon} Eridani, and 18 nearby (<25pc) low-mass stars and achieved typical single-measurement precisions of 8-15m/s with a long-term stability of 15-50m/s over longer baselines. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ~25-50m/s at ~2.3125{mu}m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ876bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD160934AB and GJ725AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3{sigma}-5{sigma}. Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of <~5m/s in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.
- ID:
- ivo://CDS.VizieR/J/ApJ/817/40
- Title:
- High-resolution NIR spectra of local giants
- Short Name:
- J/ApJ/817/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a sample of 705 local giant stars observed using the New Mexico State University 1m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R~22500), near infrared (1.51-1.7{mu}m) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [{alpha}/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relatively rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass-age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an {alpha}-dependent Gaussian SFH model show a clear age-[{alpha}/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age-metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ~0.5 dex spread in metallicity across most ages. For stars with ages <~1Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/813/120
- Title:
- High-resolution obs. of CO isotopologues in YSOs
- Short Name:
- J/ApJ/813/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This study reports an unusual heterogeneity in [^12^C^16^O]/[^13^C^16^O] abundance ratios of carbon monoxide observed in the gas phase toward seven ~solar-mass young stellar objects (YSOs) and three dense foreground clouds in the nearby star-forming regions, Ophiuchus, Corona Australis, Orion, and Vela, and an isolated core, L43. Robust isotope ratios were derived using infrared absorption spectroscopy of the 4.7{mu}m fundamental and 2.3{mu}m overtone rovibrational bands of CO at very high spectral resolution ({lambda}/{Delta}{lambda}~95000), observed with the Cryogenic Infrared Echelle Spectrograph (CRIRES) on the Very Large Telescope. We find [^12^C^16^O]/[^13^C^16^O] values ranging from ~85 to 165, significantly higher than those of the local interstellar medium (ISM) (~65-69). These observations are evidence for isotopic heterogeneity in carbon reservoirs in solar-type YSO environments, and encourage the need for refined galactic chemical evolution models to explain the ^12^C/^13^C discrepancy between the solar system and local ISM. The oxygen isotope ratios are consistent with isotopologue-specific photodissociation by CO self-shielding toward the disks, VV CrA N and HL Tau, further substantiating models predicting CO self-shielding on disk surfaces. However, we find that CO self-shielding is an unlikely general explanation for the high [^12^C^16^O]/[^13^C^16^O] ratios observed in this study. Comparison of the solid CO against gas-phase [^12^C^16^O]/[^13^C^16^O] suggests that interactions between CO ice and gas reservoirs need to be further investigated as at least a partial explanation for the unusually high [^12^C^16^O]/[^13^C^16^O] observed.
- ID:
- ivo://CDS.VizieR/J/ApJ/846/23
- Title:
- High-resolution spectra of 9 RGB stars in NGC6681
- Short Name:
- J/ApJ/846/23
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We obtain high-resolution spectra of nine red giant branch stars in NGC 6681 and perform the first detailed abundance analysis of stars in this cluster. We confirm cluster membership for these stars based on consistent radial velocities of 214.5+/-3.7km/s and find a mean [Fe/H]=-1.63+/-0.07dex and [{alpha}/Fe]=0.42+/-0.11dex. Additionally, we confirm the existence of a Na-O anti-correlation in NGC 6681 and identify two populations of stars with unique abundance trends. With the use of HST photometry from Sarajedini+ (2007AJ....133.1658S) and Piotto+ (2015AJ....149...91P) we are able to identify these two populations as discrete sequences in the cluster CMD. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences in these populations, these results do help put constraints on possible polluter candidates.
- ID:
- ivo://CDS.VizieR/J/ApJS/248/19
- Title:
- High-resolution spectroscopy of TESS stars
- Short Name:
- J/ApJS/248/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Accurate atmospheric parameters and chemical composition of stars play a vital role in characterizing physical parameters of exoplanetary systems and understanding of their formation. A full asteroseismic characterization of a star is also possible if its main atmospheric parameters are known. The NASA Transiting Exoplanet Survey Satellite (TESS) space telescope will play a very important role in searching of exoplanets around bright stars and stellar asteroseismic variability research. We have observed all 302 bright (V<8mag) and cooler than F5 spectral class stars in the northern TESS continuous viewing zone with a 1.65m telescope at the Moletai Astronomical Observatory of Vilnius University and the high-resolution Vilnius University Echelle Spectrograph. We uniformly determined the main atmospheric parameters, ages, orbital parameters, velocity components, and precise abundances of 24 chemical species (C(C2), N(CN), [OI], NaI, MgI, AlI, SiI, SiII, CaI, CaII, ScI, ScII, TiI, TiII, VI, CrI, CrII, MnI, FeI, FeII, CoI, NiI, CuI, and ZnI) for 277 slowly rotating single stars in the field. About 83% of the sample stars exhibit the Mg/Si ratios greater than 1.0 and may potentially harbor rocky planets in their systems.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/104
- Title:
- High-res. spectroscopy of LAMOST Li-rich giants
- Short Name:
- J/ApJ/877/104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The discovery of Li-rich giants has introduced a new challenge for standard stellar evolution models. To resolve this issue, the number of this type of object has been rapidly increased through the development of worldwide surveys. Taking advantage of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey, 44 new Li-rich giants are reported, which are confirmed with high-resolution observations. Based on the high-resolution and high signal-to-noise spectra, we derived the atmospheric parameters and elemental abundances with the spectral synthesis method. We performed a detailed analysis of their evolutionary stages, infrared excess, projected rotational velocity (vsini), and stellar population. We find that (1) the Li-rich giants concentrate at the evolutionary status of the red giant branch bump, red clump, and asymptotic giant branch; (2) three of them are fast rotators and none exhibit infrared excess. Our results imply that the origins of Li enrichment are most likely to be associated with the extra mixing in the stellar interior, and the external sources might only make a minor contribution. Moreover, various Li-rich episodes take place at different evolutionary stages.
- ID:
- ivo://CDS.VizieR/J/AJ/103/514
- Title:
- High-velocity stars toward South Galactic Cap
- Short Name:
- J/AJ/103/514
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spectroscopic observations of stars identified in Murray's (1986) astrometric survey of the South Galactic Cap
- ID:
- ivo://CDS.VizieR/J/A+A/652/A23
- Title:
- HII-chi-mistry-IR. Abundances
- Short Name:
- J/A+A/652/A23
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We provide a new method to derive heavy element abundances based on the unique suite of nebular lines in the mid- to far-infrared (IR) range. Using grids of photo-ionisation models that cover a wide range in O/H and N/O abundances, and ionisation parameter, our code HII-CHI-MISTRY-IR (HCm-IR) provides model-based abundances based on extinction free and temperature insensitive tracers, two significant advantages over optical diagnostics. The code is probed using a sample of 56 galaxies observed with Spitzer and Herschel covering a wide range in metallicity, 7.2~<12+log(O/H)~<8.9. The IR model-based metallicities obtained are robust within a scatter of 0.03dex when the hydrogen recombination lines, which are typically faint transitions in the IR range, are not available. When compared to the optical abundances obtained with the direct method,model- based methods, and strong-line calibrations, HCm-IR estimates show a typical dispersion of ~0.2dex, in line with previous studies comparing IR and optical abundances, a do not introduce a noticeable systematic above 12+log(O/H)>7.6. This accuracy can be achieved using the lines [SIV]10.5um, [SIII]18.7,33.5um, [NeIII]15.6um and [NeII]12.8um. Additionally, HCm-IR provides an independent N/O measurement when the [OIII]52,88um and [NIII]57um transitions are measured, and therefore the derived abundances in this case do not rely on particular assumptions in the N/O ratio. Large uncertainties (~0.4dex) may affect the abundance determinations of galaxies at sub- or over-solar metallicities when a solar-like N/O ratio is adopted. Finally, the code has been applied to 8 galaxies located at 1.8<z<7.5 with ground-based detections of far-IR lines redshifted in the submm range, revealing solar-like N/O and O/H abundances in agreement with recent studies.