The results of a combined astrometric, photometric, and spectroscopic program to identify members of the open cluster IC 4665 are presented. Numerous new proper motion/photometric candidate members and at least 23 M dwarfs with H-alpha emission have been identified. A reanalysis of IC 4665's age using different methods yields conflicting results ranging from approx. 3x10^7^ yr to the age of the Pleiades. This study provides a list of candidate cluster members in the intermediate and low-mass regime of this cluster. Future spectroscopic observations of these candidates should eventually identify true cluster members. The results of new echelle observations of some candidates and the photometric monitoring of one apparent cluster member are given in an appendix.
As a follow-up to the optical spectroscopic campaign aimed at achieving completeness in the Third Catalog of Hard Fermi-LAT Sources (3FHL), we present here the results of a sample of 28 blazars of an uncertain type observed using the 4m telescope at Cerro Tololo Inter-American Observatory in Chile. Out of these 28 sources, we find that 25 are BL Lacertae objects (BL Lacs) and 3 are flat-spectrum radio quasars (FSRQs). We measure redshifts or lower limits for 16 of these blazars, and it is observed that the 12 remaining blazars have featureless optical spectra. These results are part of a more extended optical spectroscopy follow-up campaign for 3FHL blazars, where, until now, 51 blazars of an uncertain type have been classified into BL Lac and FSRQ categories. Furthermore, this campaign has resulted in redshift measurements and lower limits for 15 of these sources. Our results contribute toward attaining a complete sample of blazars above 10 GeV, which then will be crucial in extending our knowledge on blazar emission mechanisms and the extragalactic background light.
We here distinguish two counter-rotating stellar components in NGC 4191 and characterize their physical properties such as kinematics, size, morphology, age, metallicity. We obtained integral field spectroscopic observations with VIRUS-W and used a spectroscopic decomposition technique to separate the contribution of two stellar components to the observed galaxy spectrum. We also performed a photometric decomposition, modeling the galaxy with a Sersic bulge and two exponential disks of different scale length, with the aim of associating these structural components with the kinematic components. We then measured the equivalent width of the absorption line indices on the best-fit models that represent the kinematic components and compared our measurements to the predictions of stellar population models that also account for the variable abundance ratio of {alpha} elements.
We present a library of high-resolution (R~45000) and high signal-to-noise ratio (S/N>=200) near-infrared spectra for stars of a wide range of spectral types and luminosity classes. The spectra were obtained with the Immersion GRating INfrared Spectrograph covering the full range of the H (1.496-1.780{mu}m) and K (2.080-2.460{mu}m) atmospheric windows. The targets were primarily selected for being MK standard stars covering a wide range of effective temperatures and surface gravities, with metallicities close to the solar value. Currently, the library includes flux-calibrated and telluric-absorption-corrected spectra of 84 stars, with prospects for expansion to provide denser coverage of the parametric space. Throughout the H and K atmospheric windows, we identified spectral lines that are sensitive to Teff or logg and defined corresponding spectral indices. We also provide their equivalent widths (EWs). For those indices, we derive empirical relations between the measured EWs and the stellar atmospheric parameters. Therefore, the derived empirical equations can be used to calculate the Teff and logg of a star without requiring stellar atmospheric models.
We aim to investigate the physical and chemical properties of the molecular envelope of the oxygen-rich AGB star IK Tau. We carried out a millimeter wavelength line survey between ~79 and 356GHz with the IRAM-30m telescope. We analysed the molecular lines detected in IK Tau using the population diagram technique to derive rotational temperatures and column densities. We conducted a radiative transfer analysis of the SO_2_ lines, which also helped us to verify the validity of the approximated method of the population diagram for the rest of the molecules.
We present a galaxy survey of the field surrounding PKS 0405-123 performed with the WFCCD spectrometer at Las Campanas Observatory. The survey is comprised of two data sets: (1) a greater than 95% complete survey to R=20mag of the field centered on PKS 0405-123 with 10' radius (L~0.1L* and radius of 1Mpc at z=0.1); and (2) a set of four discontiguous (i.e., non-overlapping), flanking fields covering ~1deg^2^ area with completeness ~90% to R=19.5mag. With these data sets, one can examine the local and large-scale galactic environment of the absorption systems identified toward PKS 0405-123. In this paper, we focus on the O VI systems analyzed in Paper I (Prochaska et al., 2004, Cat. <J/ApJ/617/718>). The results suggest that this gas arises in a diverse set of galactic environments including the halos of individual galaxies, galaxy groups, filamentary-like structures, and also regions devoid of luminous galaxies. In this small sample, there are no obvious trends between galactic environment and the physical properties of the gas. Furthermore, we find similar results for a set of absorption systems with comparable NHI but no detectable metal lines. The observations indicate that metals are distributed throughout a wide range of environments in the local universe. Future papers in this series will address the distribution of galactic environments associated with metal-line systems and the Ly forest based on data for over 10 additional fields. All of the spectra and fits tables are available at http://www.ucolick.org/~xavier/WFCCDOVI/
RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that the galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z=0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RXJ0848.6+4453 corresponds to an epoch of last star formation at z_form_=1.95_-0.15_^+0.22^. Further, we find that the spectra of the galaxies in RXJ0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line H{zeta} is consistent with a major star formation episode 1-2Gyr prior, which in turn agrees with z_form_=1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RXJ0848.6+4453 of passive galaxies with young stellar populations and massive galaxies still experiencing some star formation appears similar to the galaxy populations recently identified in two z{approx}2 clusters.
We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6-0305 (z=0.54), RXJ0152.7-1357 (z=0.83), and RXJ1226.9+3332 (z=0.89). Our analysis is based on high signal-to-noise ground-based optical spectroscopy and Hubble Space Telescope imaging for a total of 17-34 members in each cluster. Using the dynamical masses together with the effective radii and the velocity dispersions, we find no indication of evolution of sizes or velocity dispersions with redshift at a given galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices and velocity dispersions. We confirm that the FP is steeper at z~0.86 compared to the low-redshift FP, indicating that under the assumption of passive evolution the formation redshift, z_form_, depends on the galaxy velocity dispersion (or alternatively mass). At a velocity dispersion of {sigma}=125km/s (Mass=10^10.55^M_{sun}_) we find z_form_=1.24+/-0.05, while at {sigma}=225km/s (Mass=10^11.36^M_{sun}_) the formation redshift is z_form_=1.95^+0.3^_-0.2_, for a Salpeter initial mass function. The three clusters follow similar scaling relations between absorption line indices and velocity dispersions as those found for low-redshift galaxies. The zero point offsets for the Balmer lines depend on cluster redshifts. However, the offsets indicate a slower evolution, and therefore higher formation redshift, than the zero point differences found from the FP, if interpreting the data using a passive evolution model. Specifically, the strength of the higher order Balmer lines H{delta} and H{gamma} implies z_form_>2.8. The scaling relations for the metal indices in general show small and in some cases insignificant zero point offsets, favoring high formation redshifts for a passive evolution model.
We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-{sigma} ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M*/L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3{sigma} tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08M_{sun}_. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2{sigma}. There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched-{sigma} ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses (m<~0.3M_{sun}_), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M*/L relative to the mean matched-{sigma} ETG. We provide the spectra used in this study to facilitate future comparisons.
We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al. (1999, Cat. J/AJ/117/354), restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks.