In the Sixth Catalog of Orbits of Visual Binary Stars we found those belonging to the Main Sequence to form a sample containing 432 visual binaries. Their total masses were obtained dynamically, i.e. they were calculated using the orbital elements and the new Hipparcos parallaxes. For the same pairs the total mass was also found astrophysically - by applying the mass-luminosity relation. The apparent magnitudes of the components were found in two different ways: by deriving them from total magnitudes and magnitude differences, and by taking their values directly from a catalogue. The results for these two approaches show no essential discrepancy. The values of total masses obtained dynamically have a large dispersion involving even completely unrealistic values. This is a clear indication that the input data are not sufficiently reliable. Nevertheless, in a large number of cases the agreement between total masses obtained by us in two different ways is quite satisfactory indicating that i) for many visual binaries, as a rule not too distant and with high-quality orbital elements, the dynamical total masses can be reliable; ii) the mass-luminosity relation yields quite satisfactory estimates for the component masses when they belong to the Main Sequence and iii) a correlation between the relative parallax error and orbit grade exists.
The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a "fossil" record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles5. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System.