- ID:
- ivo://CDS.VizieR/J/ApJ/748/14
- Title:
- ONC population data from WFI observations
- Short Name:
- J/ApJ/748/14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new census of the Orion Nebula Cluster over a large field of view (>~30'x30'), significantly increasing the known population of stellar and substellar cluster members with precisely determined properties. We develop and exploit a technique to determine stellar effective temperatures from optical colors, nearly doubling the previously available number of objects with effective temperature determinations in this benchmark cluster. Our technique utilizes colors from deep photometry in the I band and in two medium-band filters at {lambda}~753 and 770nm, which accurately measure the depth of a molecular feature present in the spectra of cool stars. From these colors we can derive effective temperatures with a precision corresponding to better than one-half spectral subtype, and importantly this precision is independent of the extinction to the individual stars. Also, because this technique utilizes only photometry redward of 750nm, the results are only mildly sensitive to optical veiling produced by accretion. Completing our census with previously available data, we place some 1750 sources in the Hertzsprung-Russell diagram and assign masses and ages down to 0.02M_{sun}_. At faint luminosities, we detect a large population of background sources which is easily separated in our photometry from the bona fide cluster members. The resulting initial mass function of the cluster has good completeness well into the substellar mass range, and we find that it declines steeply with decreasing mass. This suggests a deficiency of newly formed brown dwarfs in the cluster compared to the Galactic disk population.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/722/1092
- Title:
- Optical photometry of the ONC. II.
- Short Name:
- J/ApJ/722/1092
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new analysis of the stellar population of the Orion Nebula Cluster (ONC) based on multi-band optical photometry and spectroscopy. We study the color-color diagrams in BVI, plus a narrowband filter centered at 6200{AA}, finding evidence that intrinsic color scales valid for main-sequence dwarfs are incompatible with the ONC in the M spectral-type range, while a better agreement is found employing intrinsic colors derived from synthetic photometry, constraining the surface gravity value as predicted by a pre-main-sequence isochrone. We refine these model colors even further, empirically, by comparison with a selected sample of ONC stars with no accretion and no extinction. We consider the stars with known spectral types from the literature, and extend this sample with the addition of 65 newly classified stars from slit spectroscopy and 182 M-type from narrowband photometry; in this way, we isolate a sample of about 1000 stars with known spectral type. We introduce a new method to self-consistently derive the stellar reddening and the optical excess due to accretion from the location of each star in the BVI color-color diagram. This enables us to accurately determine the extinction of the ONC members, together with an estimate of their accretion luminosities. We adopt a lower distance for the Orion Nebula than previously assumed, based on recent parallax measurements. With a careful choice of also the spectral-type-temperature transformation, we produce the new Hertzsprung-Russell diagram of the ONC population, more populated than previous works.
- ID:
- ivo://CDS.VizieR/J/ApJS/247/46
- Title:
- Opt. photometry of SMUDGes ultra-diffuse galaxies
- Short Name:
- J/ApJS/247/46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first systematic study of the stellar populations of ultra-diffuse galaxies (UDGs) in the field, integrating the large area search and characterization of UDGs by the SMUDGes survey with the twelve-band optical photometry of the S-PLUS survey. Based on Bayesian modeling of the optical colors of UDGs, we determine the ages, metallicities, and stellar masses of 100 UDGs distributed in an area of ~330deg^2^ in the Stripe 82 region. We find that the stellar masses and metallicities of field UDGs are similar to those observed in clusters and follow the trends previously defined in studies of dwarf and giant galaxies. However, field UDGs have younger luminosity- weighted ages than do UDGs in clusters. We interpret this result to mean that field UDGs have more extended star formation histories, including some that continue to form stars at low levels to the present time. Finally, we examine stellar population scaling relations that show that UDGs are, as a population, similar to other low surface brightness galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/889/L34
- Title:
- Oscillations in red giants from TESS data
- Short Name:
- J/ApJ/889/L34
- Date:
- 17 Jan 2022 00:14:58
- Publisher:
- CDS
- Description:
- Since the onset of the "space revolution" of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky-providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseimic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5%-10%, and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data.
- ID:
- ivo://CDS.VizieR/J/ApJ/764/78
- Title:
- Oxygen abundances in nearby FGK stars
- Short Name:
- J/ApJ/764/78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-local thermodynamic equilibrium analysis of the 777nm OI triplet lines. We assign a kinematic probability for the stars to be thin-disk (P_1_), thick-disk (P_2_), and halo (P_3_) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P_2_>0.5) relative to thin-disk (P_1_>0.5) stars with [Fe/H]<~-0.2, as well as a "knee" that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H]>~-0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with "intermediate" kinematics (P_1_<0.7, P_2_<0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P_3_>0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V<-200km/s; halo stars with V>-200km/s follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with "ambiguous" kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.
- ID:
- ivo://CDS.VizieR/J/AJ/152/19
- Title:
- Pan-Pacific Planet Search (PPPS). V. 164 stars
- Short Name:
- J/AJ/152/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spectroscopic stellar parameters for the complete target list of 164 evolved stars from the Pan-Pacific Planet Search, a five-year radial velocity campaign using the 3.9m Anglo-Australian Telescope. For 87 of these bright giants, our work represents the first determination of their fundamental parameters. Our results carry typical uncertainties of 100K, 0.15dex, and 0.1dex in T_eff_, logg, and [Fe/H] and are consistent with literature values where available. The derived stellar masses have a mean of 1.31_-0.25_^+0.28^M_{Sun}_, with a tail extending to ~2M_{Sun}_, consistent with the interpretation of these targets as "retired" A-F type stars.
- ID:
- ivo://CDS.VizieR/J/A+A/466/627
- Title:
- Parameters of DA white dwarfs in SDSS-DR1
- Short Name:
- J/A+A/466/627
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The SDSS Data Release 1 includes 1833 DA white dwarfs (WDs) and forms the largest homogeneous sample of WDs. This sample provides the best opportunity to study the statistical properties of WDs. We adopt a recently established theoretical model to calculate the mass and distance of each WD using the observational data. Then we adopt a bin-correction method to correct for selection effects and use the 1/V weight-factor method to calculate the luminosity function, the continuous mass function and the formation rate of these WDs.
- ID:
- ivo://CDS.VizieR/J/AJ/152/6
- Title:
- Parameters of Kepler stars using LAMOST & seismic data
- Short Name:
- J/AJ/152/6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Asteroseismology is a powerful tool to precisely determine the evolutionary status and fundamental properties of stars. With the unprecedented precision and nearly continuous photometric data acquired by the NASA Kepler mission, parameters of more than 10^4^ stars have been determined nearly consistently. However, most studies still use photometric effective temperatures (Teff) and metallicities ([Fe/H]) as inputs, which are not sufficiently accurate as suggested by previous studies. We adopted the spectroscopic Teff and [Fe/H] values based on the LAMOST low-resolution spectra (R~1,800), and combined them with the global oscillation parameters to derive the physical parameters of a large sample of stars. Clear trends were found between {Delta}logg(LAMOST-seismic) and spectroscopic Teff as well as logg, which may result in an overestimation of up to 0.5dex for the logg of giants in the LAMOST catalog. We established empirical calibration relations for the logg values of dwarfs and giants. These results can be used for determining the precise distances to these stars based on their spectroscopic parameters.
- ID:
- ivo://CDS.VizieR/J/ApJ/791/107
- Title:
- Parameters of NGC 5139 SGBs stars
- Short Name:
- J/ApJ/791/107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- {omega} Centauri is a peculiar globular cluster formed by a complex stellar population. To investigate it, we studied 172 stars belonging to the five SGBs that we can identify in our photometry, in order to measure their [Fe/H] content as well as estimate their age dispersion and the age-metallicity relation. The first important result is that all of these SGBs have a distribution in metallicity with a spread that exceeds the observational errors and typically displays several peaks that indicate the presence of several subpopulations. We were able to identify at least six of them based on their mean [Fe/H] content. These metallicity-based subpopulations are seen to varying extents in each of the five SGBs. Taking advantage of the age sensitivity of the SGB, we showed that, first of all, at least half of the subpopulations have an age spread of at least 2 Gyr. Then, we obtained an age-metallicity relation that is the most complete to date for this cluster. Interpretation of the age-metallicity relation is not straightforward, but it is possible that the cluster (or what we can call its progenitor) was initially composed of two populations with different metallicities. Because of their age, it is very unlikely that the most metal-rich derives from the most metal-poor by some kind of chemical evolution process, so they can be assumed to be two independent primordial objects, or perhaps two separate parts of a single larger object, that merged in the past to form the present-day cluster.
- ID:
- ivo://CDS.VizieR/J/ApJ/846/145
- Title:
- PHAT. XIX. Formation history of M31 disk
- Short Name:
- J/ApJ/846/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We map the star formation history across M31 by fitting stellar evolution models to color-magnitude diagrams of each 83"x83" (0.3x1.4kpc, deprojected) region of the Panchromatic Hubble Andromeda Treasury (PHAT) survey outside of the innermost 6'x12' portion. We find that most of the star formation occurred prior to ~8Gyr ago, followed by a relatively quiescent period until ~4Gyr ago, a subsequent star formation episode about 2Gyr ago, and a return to relative quiescence. There appears to be little, if any, structure visible for populations with ages older than 2Gyr, suggesting significant mixing since that epoch. Finally, assuming a Kroupa initial mass function from 0.1 to 100M_{sun}_, we find that the total amount of star formation over the past 14Gyr in the area over which we have fit models is 5x10^10^M_{sun}_. Fitting the radial distribution of this star formation and assuming azimuthal symmetry, (1.5+/-0.2)x10^11^M_{sun}_ of stars has formed in the M31 disk as a whole, (9+/-2)x10^10^M_{sun}_ of which has likely survived to the present after accounting for evolutionary effects. This mass is about one-fifth of the total dynamical mass of M31.